Ответ на вопрос вопрос 2)

1. Теоретические основы построения модуляторов и демодуляторов

Аналоговый перемножитель сигнала (ПС) является универсальным базовым блоком, выполняющим ряд математических функций: умножение, деление, возведение в квадрат. В ряде случаев функциональные возможности ПС реализуются совместно с ОУ.

ПС может применяться в качестве модулятора. Рассмотрим основные принципы построения модуляторов и демодуляторов.

Балансный модулятор может иметь высокую линейность лишь по одному (модуляционному) входу. Второй вход (вход несущей) может запитываться переменным напряжением с постоянной амплитудой, причем уровень несущей может быть достаточно большим и вырождаться в функцию коммутации SН (t) (рис. 1,а).

Физически Это означает, что активные элементы модулятора при высоком уровне входного сигнала превращаются в синхронные ключи, при этом модулирующий сигнал UM (t) (рис. 1,б) эффективно коммутируется с частотой несущей SН (t), образуя выходной сигнал в виде (рис. 1,в)


, (1)

где К – коэффициент пропорциональности.

Рис. 1. Диаграммы, поясняющие работу БМ при воздействии функции коммутации

Таким образом, при использовании БМ в режиме сильных сигналов один из сигналов (несущая) представляет собой симметричную прямоугольную волну единичной амплитуды SН (t) (рис. 1, а) первая гармоника которой является полезной, а другие – нежелательны.

Используя разложение Фурье, несущую SН (t) можно представить в виде суммы членов бесконечного гармонического ряда с частотами кратными

,

где коэффициенты Фурье вычисляются по формуле

.

Для подавления гармонических составляющих ФНЧ с частотой среза немного выше (рис. 2). В этом случае для первой гармоники выходного напряжения (1) можно записать

, (2)

где К – коэффициент, учитывающий произведение масштабных коэффициентов передачи ПС и ФНЧ на частоте первой гармонической; UН – напряжение колебания ограниченной несущей.

Рис. 2. Схема БМ

Если на модулирующий вход подать сигнал с постоянной составляющей

, (3)

где U0 – напряжение постоянной составляющей; UM и - амплитуда и частота модулирующего напряжения; m=UM /U0, то на выходе ФНЧ БМ в соответствием с выражением (2) будет получен АМ сигнал

, (4)

где - уровень несущей АМ сигнала.

При использовании БМ в режиме фазового детектирования (рис. 3) на входы ПС подают напряжения одной и той же частоты, но со сдвигом фаз на угол . Пусть один из сигналов будет , а второй , тогда на выходе БМ получим

. (5)

Рис. 3. Фазовый демодулятор

Если с помощью ФНЧ отфильтровать составляющую с удвоенной частотой, то на выходе ФД получим постоянное напряжение, пропорциональное косинусу угла

. (6)

В случае необходимости с помощью полосового фильтра, как следует из выражения (5), можно получить удвоение частоты.

Возможность определения с помощью БМ фазового сдвига между напряжениями может быть использована для построения частотных демодуляторов ЧМ сигнала. Структурная схема частотного демодулятора (рис.4) включает широкополосный ограничитель 1, устраняющий возможное изменение амплитуды ЧМ сигнала и формирующий высокий уровень сигнала коммутации S1 (t), полосовой фазосдвигающий фильтр 2, настроенный на частоту несущей (среднюю частоту) ЧМ сигнала, а также БМ 3 и ФНЧ 4.

Рис. 4. Частотный демодулятор

Полосовой фильтр (рис. 5) формирует второй сигнал S2 (t), управляющий БМ. При высокой добротности фильтра фазовый сдвиг , вызываемый девиацией частоты вблизи несущей , может быть записан в следующем виде

,

C1

где .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: