Цитогенетические основы дифференцировки

В ходе индивидуального развития многоклеточных организмов возникает гетерогенность клеток и тканей, что и является процессом дифференциации. Различают две формы этого процесса: 1) возникновение различий в ряду клеточных поколений между отдельными клетками или группами клеток; 2) появление различий во время жизни одной клетки. В первом случае дифференцировка охватывает большое количество клеток, которые затем расчленяются на отдельные зачатки, или клеточные популяции. Во втором случае дифференцировка происходит в период онтогенеза отдельной клетки (например, превращение первичной половой клетки в ооцит, дифференцировка эпителиальных клеток кишечника, образование эритроцитов и т. д.).

Гены: Регуляторные и Структурные →Конститутивные и Индуцибельные

Индуцибельные гены контролирующие ход онтогенеза (переключатели или диспетчеры) и гены прямо определяющие структуруи Fи компонентов кл. и организма(формообразующие, гомеогены) Выключение нормально включ. ИГ – репрессия. Включение нормально выключенных – индукция. р: гены лактозного оперона у нек. бактерий – когда нет глюкозы.

Биохимическая дифференцировка предшест­вуе морфологической, но изучение начальных биохимических этапов действия гена у высших организмов – трудная задача. Начиная с 1920-х годов, такие исследования проводятся на расте­ниях и животных. При этом по отклонению от нормы в развитии изучаемых признаков удавалось установить начало действия генов. У домашней мыши, например, была обнаружена серия множественных аллелей в локусе Т. В гомозиготном состоянии ген Т (ТТ) вызывает смерть зародыша на 11-й день. В гетерозиготном состоянии (Tt) особь сохраняет жизнеспособность, но у нее развивается укорочение хвоста (брахиурия). Многочислен­ные рецессивные аллели этого гена вызывают смерть зародышей на различных стадиях развития, появление бесхвостых мышей или мышей с нормальными хвостами. Используя различные ал­лели, можно генетически моделировать продолжительность жиз­ни эмбрионов и особенности развития хвоста

→комбинирование мутантных аллелей при скре­щиваниях позволяет моделировать эмбриогенез, как бы останав­ливая или изменяя развитие, что дает возможность уточнить начало дифференцировки признака.

фенотипическое проявление гена может значительно варьировать по степени выражения признака. → экспрессивность (Тимофеев–Ресов­ский, 1927). Экспрессивность может действовать в узких или ши­роких пределах, т. е. от нормального выражения признака до максимально возможного мутационного эффекта. Например, в потомстве от одной пары мутантных дрозофил с сильно редуци­рованным числом фасеток («безглазая» форма) у одних особей глаза будут лишены фасеток наполовину, а у других — почти пол­ностью.

Любой мутантный признак может обнаружиться у одних и не проявиться у других особей. Эта способность, названная → пенетрантность проявления гена, оценивается по количеству особей в популяции, имеющих мутантный фенотип. При полной пенетрантности (100%) мутантный ген проявляет свое действие у всех особей, имеющих его, а при неполной — лишь у некоторых.

Если экспрессивность — это реакция сходных генотипов на среду, то пенетрантность – показатель гетерогенности линий или популяций не по основному гену, определяющему конкретный признак, а по генам-модификаторам, которые создают генотипическую среду для проявления гена. И экспрессивность, и пене­трантность обусловлены взаимодействием генов в генотипе и ре­акцией последнего на факторы внешней среды. Оба эти явления имеют приспособительное значение и поддерживаются отбором, они хорошо известны и для растений, и для животных.

Фенокопии и морфозы обусловливаются изме­нениями в соматических клетках, а не изменениями генов. Иначе говоря, это результат нарушения действия генов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: