Создание феноменов

Одна из ролей эксперимента настолько отрицается философами науки, что для нее даже нет названия. Я называю это созданием феноменов (явлений). Традиционно говорят, что ученые объясняют явления, которые они встречают в природе. Я говорю, что они часто создают явления, которые впоследствии становятся центральными элементами теорий.

Слово “феномен” имеет долгую философскую историю. В эпоху Возрождения некоторые астрономы пытались “спасти явление”, то есть создать систему вычислений, которая бы согласовывалась с известными закономерностями. Не все восхищались этим. Кто сравнится в презрении с Фрэнсисом Бэконом, в 1625 году писавшем в своем эссе “Предрассудки”: “Они подобны астрономам, которые для того, чтобы спасти явления, выдумывали эксцентриситеты, эпициклы и целую машинерию орбит, хотя сами не верили, что эти вещи существуют”. Несмотря на это, удивительно, что великий французский историк и философ науки, известный антиреалист Пьер Дюгем выбрал то же самое слово для названия одной из своих книг: “Спасти явления” (1908 г.). Бас ван Фраассен использовал это название для главы своей книги “Научный образ”. Эти авторы учат, что теория предоставляет формализм для погружения феноменов в согласованный порядок, но теория, там где она распространяется за пределы явления, не имеет отношения к какой-либо реальности. Они считают само собой разумеющимся то, что явления открываются наблюдателем и экспериментатором. Как же я могу утверждать, что основная роль эксперимента – это создание явлений? Разве я предлагаю обсудить некоторый вариант окончательного идеализма, в котором мы производим явления, полагаемые даже Дюгемом “данными”? Наоборот, я считаю, что создание явлений больше соответствует твердолобому научному реализму.

Филологический экскурс

Слово “феномен” имеет древнее философское происхождение. В Греции оно обозначало вещь, событие или процесс, который может быть виден, и происходит от глагола “являться”. С самого начала это слово использовалось для того, чтобы выражать философские мысли о видимом и реальности, и было философским минным полем. И все же оно имеет вполне определенный смысл в обычных научных работах. Явление достойно внимания. Явление различимо. Обычно явление – событие или процесс определенного типа, которое происходит регулярно при определенных обстоятельствах. Явление или феномен может также обозначать уникальное событие, которое мы выделяем как особо важное. Если мы знаем регулярность, проявляемую в явлении, мы выражаем ее в законоподобном обобщении. Сам факт такой регулярности иногда называется явлением.

Несмотря на такое употребление, множество античных мыслителей придерживалось того мнения, что феномены – изменяющиеся предметы чувств, в противоположность сущностям (essences), постоянной реальности. Таким образом, явления противопоставлялись реальности. Тогда как такой современный позитивист, как ван Фраассен, придерживается мнения, что явления – единственная реальность. Слово “явление” находится как бы между этими двумя учениями.

Эллинистические писатели противопоставляли феномены ноуменам, вещам в себе. Кант перенес это противопоставление в современную философию и сделал ноумены непознаваемыми. Вся естественная наука стала наукой феноменов. Затем был расцвет позитивизма, полагавшего, что непознаваемое может не приниматься в расчет, как если бы оно не существовало. Слово “феномен” стало обозначать для некоторых эмпирических философов чувственные данные – частные, личные, относящиеся к ощущениям. Феноменализм, по словам Дж. С. Милля, означает то, что вещи – лишь постоянные возможности ощущения и что внешний мир состоит из реальных и возможных данных чувств.

Слово “феноменология” было предложено в 1764 году физиком Дж. Х. Ламбертом как название для науки о явлениях, но с тех пор слово разделилось на два совершенно разных значения. Философы знают, что “Феноменология духа” Гегеля (1807 г.) – это исследование того, как разум развивается, проходя различные стадии познания себя как явления, но, в конце концов, постигает себя как реальность. В начале этого века слово “феноменология” было взято в качестве названия для немецкой школы философии, самым знаменитым из которой был Гуссерль. Меня настолько обучили этому философскому смыслу слова, что когда я выступал с лекцией по этому предмету в серии “Перспективы” университета Нотр-Дам (о чем вспоминаю с благодарностью), я с удивлением услышал на физическом факультете о желании взять на работу феноменолога. Феноменология – важная часть физики твердого тела и физики элементарных частиц. Если бы вы хотели проверить написанное мной о мюонах и мезонах в главе 8, вы бы наверняка воспользовались классической ссылкой на такую книгу, как например, “Мезоны и поля” Х. Бете. Там вы найдете обсуждение мюонов, за которым следует длинный раздел по феноменологии. Мое использование слова “феномен” (“явление”) – такое же, как у физиков. Его следует максимально отделять от философского феноменализма, философской феноменологии и частных, мимолетных чувственных данных. Явление для меня – нечто публичное, регулярное, возможно законоподобное, но, может быть, и исключительное.

То есть образцом для моего использования слова служат физика и астрономия. Наблюдатели звезд эпохи Возрождения имели в виду как регулярно наблюдаемые движения сфер, так и особые явления, например, затмение Марса, которое, как они надеялись, окажется выводимым из некоторого законообразного устройства небес. Но, конечно, астрономы были также и философами, которые были ближе к грекам в использовании обертонов слова феномен. Феномены были “видимостями” (“appearances”). Историк науки Николя Жардэн рассказывал мне, что Кеплер считал недостатком солнечной системы то, что при наблюдении мы видим явления, – то, где по видимости движутся планеты, – а не истинные положения и пути небесных тел.

Решение явлений

Иногда слова старых астрономов о спасении явлений звучали вполне серьезно, но я думаю, что задолго до Бэкона эти слова зачастую использовались с некоторой иронией. В семнадцатом веке научное использование слова “явление” распространилось на все то, что называлось “явлениями природы”. Это включало как закономерности, так и то, что наши современные страховые компании продолжают называть божьими делами: такие бедствия, как например, землетрясение. Даниэль Дефо говорит о дневной видимости звезд как о явлении. Явлением может быть скорее аномалия, чем то, что известно как регулярность.

Выражение “спасать явления” (“to save the phenomena”) претерпело смысловые сдвиги. Его корни можно проследить до древних греков, затем встретить его у римлян, использовавших глагол salve (спасать). В английском языке семнадцатого века он трансформировался не в глагол save, а в глагол solve, так что, например, Дэвид Юм писал о “решении явления” (“the solution of the phenomenon”). Это также обозначало “объяснение явлений”, что было полностью противоположно тому, что Дюгем имеет в виду под спасением явлений. Таким образом, всякий, кто надеется, что филология даст урок философии, должен себя осаживать.

Не потерялась ли здесь родословная слова “явление” настолько, что нет возможности придать ему тот смысл, который придаю ему я? Напротив, этимология моего значения на редкость согласована, а также совпадает с основным современным значением этого слова, используемым в естественных науках. В восемнадцатом веке слово “phenomenon” употреблялось в английском языке преимущественно в моем смысле. Можно было бы подумать, что его использование у Беркли служит контрпримером, поскольку в настоящее время его называют феноменалистом, сводившим внешний мир к чувственным данным. Совсем наоборот. В книге Siris (1744), написанной им в конце жизни, он употреблял это слово 40 раз. Эта книга – замечательный, хотя и несколько сумасшедший трактат обо всем, начиная с запоров, включая науку и кончая верой в Бога. Беркли использует фразу “явление природы” в обычном для своего времени значении, для обозначения известных закономерностей. Конечно, Беркли считал, что все явления – видимости (appearances), но не потому что он считал их чувственными данными! В философских частях своей книги Беркли пытается опровергать английских философов естественных наук, работавших в традиции Бойля и Ньютона. Он предоставляет совершенно нематериалистическое и несколько антиреалистическое описание решения явлений, но его замечания следуют из его теорий материи и причинности, а не из некоего нестандартного смысла этого слова, в котором само “явление” обозначает чувственно данное.

Здесь можно вполне положиться на словари. Оксфордский энциклопедический словарь (ОЭС), который представляет собой богатое месторождение примеров, часто ошибается относительно философских слов, потому что он отражает тот анахронический стиль философствования, который был принят в том городе, где была написана эта великая книга. Так, в ОЭС говорится, что слово “явление” стало обозначать “прямое содержание чувственного опыта” с момента выхода в свет книги “Действующие силы человеческого разума” Томаса Рида (1788 г.). Но это неправильное прочтение того места, на которое ссылается словарь. Рид говорит о явлениях природы, и так же как Беркли, в качестве стандартного примера рассматривает действие магнита на стрелку компаса. Это действие не есть “прямое содержание чувственного опыта”, как утверждает словарь, но наблюдаемая закономерность природы. Рид защищает традиционную ньютоновскую линию, ставшую впоследствии частью позитивизма Конта, а именно то, что решение явления представляет собой описательные законы, но ничего не говорит о действующих причинах.

Именно немецкой философии мы обязаны возрождением “философского” смысла слова “феномен”, которое стало принятым в английской школе феноменализма и континентальной школе феноменологии. Парадоксально, что если бы британцы придерживались взгляда своих мэтров, таких как Беркли или Рид, они бы никогда не впали в крайности эмпирицизма.

Эффекты

Когда физики встречаются в теории и эксперименте с поучительными явлениями, они начинают называть их эффектами. Я не знаю, когда это началось, но к 1880-м годам это стало всеобщей практикой: эффект Фарадея или магнитооптический эффект, эффект Комптона, эффект Зеемана, фотоэлектрический эффект, аномальный эффект Зеемана, эффект Джозефсона. Эверитт отмечает, что Максвел говорит об эффекте Пельтье в своей “Теории тепла” (1872 г.). Может быть, с этого момента началось использование этого слова.

“Эффекты” начали действительно скапливаться в физике начиная с середины 1880-х годов. Это можно было бы использовать в качестве симптома новой эпохи в самой физике. Что такое эффект, и почему люди начали называть что-либо “эффектами”? Возьмем, к примеру, эффект, обнаруженный Е. Г. Холлом в 1879 году, когда он занимался исследованиями в новой физической лаборатории Роулэнда при Университете Джона Хопкинса. Роулэнд попросил Холла исследовать некое замечание, сделанное экспромтом Джеймсом Клерком Максвеллом. В “Трактате по электричеству и магнетизму” Максвелл писал, что когда проводник с током помещен в магнитное поле, то поле действует на проводник, а не на ток. В недавнем исследовании эффекта Холла Дж. З. Бухвальд использует этот случай для того, чтобы восстановить дух теории Максвелла того времени. Холл предположил, что Максвелл имел в виду изменение сопротивления проводника или образование разности потенциалов под действием [магнитного] поля. Холлу не удалось подтвердить первый из этих эффектов, но в конце концов он подтвердил второй. Он получил разность потенциалов на золотом листе, на прямой, перпендикулярной к напряженности магнитного поля, и току. Начальные объяснения этого явления оказались ошибочными, потому что использование других проводников создает разницу потенциалов в направлении, противоположном направлению в случае с золотом. Сам Холл описывал этот эффект как явление – так же, как это делается во множестве стандартных словарей по физике, которые начинают статью “эффект Холла” словами “явление, которое...”. В своей дневниковой записи за 10 ноября 1879 года, описывая некоторые экспериментальные успехи, Холл писал:

“Казалось неосторожным поверить, что открыто новое явление, но теперь, когда прошло почти две недели и эксперимент был успешно повторен при разных обстоятельствах..., уже можно заявить, что магнит в самом деле действует на электрический ток или, по крайней мере, на электрическую цепь, и этот эффект никогда явно не наблюдался и не был доказан.”

Только одно замечание, которое возникло из теоретической перспективы Клерка Максвелла, заставило Холла насторожиться. То, что он обнаружил, было не тем, что ожидал найти Максвелл. Открытие также не было сделано в ходе проверки теории. Это было исследованием, как если бы Максвелл заявил, что в неисследованных водах может быть остров.

Явления и эффекты относятся к одному типу: это закономерности, достойные упоминания. Слова “явления” и “эффекты” могут часто быть синонимами, и все же они указывают в разных направлениях. Слово “явления” вызывает из полусознательных хранилищ языка события, описываемые талантливым наблюдателем, который не проникает в мир, а наблюдает за звездами. Эффекты напоминают нам о великих экспериментаторах, в честь которых эффекты называются: мужчин и женщин, комптонов и кюри, проникавших в суть природных процессов, для того чтобы создать закономерности, которые, по крайней мере поначалу, могли считаться регулярными (или аномальными) лишь по отношению к будущему теоретическому основанию.

Создание явлений

Обычная точка зрения: Холл не создавал своего эффекта! Он обнаружил, что прохождение тока через золотой лист создает разность потенциалов на прямой, которая перпендикулярна вектору напряженности магнитного поля и току. Он и другие исследователи позже изучали ответвления этого эффекта. Что, например, происходит с образцами, отличными от золота, или с полупроводниками? Вся эта работа требовала мастерства. Вся аппаратура была произведена вручную, при этом был сделан ряд изобретений. Но мы склонны считать, что явления, обнаруженные в лаборатории, представляют собой части Божьего рукоделия, которое еще предстоит открыть.

Такой подход естественен с точки зрения философии, определяемой теорией. Мы формулируем теории о мире. Мы делаем предположения относительно различных законов природы. Явления суть закономерности, следствия этих законов. Поскольку наши теории направлены на то, чтобы добывать истину о вселенной – Бог писал законы в Своей Книге до начала времен, – то из этого следует, что явления всегда существовали, ожидая своего открытия.

Я же, напротив, полагаю, что эффект Холла не существует вне аппаратуры определенного типа. Ее современный эквивалент стал технологией, производимой надежным и единообразным способом. Эффект, по крайней мере в чистом состоянии, может быть реализован только в подобных приборах.

Это звучит парадоксально. Разве ток, проходящий по проводнику под прямым углом к магнитному полю, не производит потенциал в любом уголке природы? И да, и нет. Если в природе имеет место такое сочетание условий, без мешающих причин, тогда имеет место эффект Холла. Но нигде вне лаборатории не наблюдается такое чистое сочетание условий. В природе происходят события, являющиеся следствием эффекта Холла и множества других эффектов. Но этот способ описания явлений как взаимодействия или результирующей некоторого числа различных законов, ориентирован на теорию. Это описание говорит о том, как мы анализируем сложные явления. Не стоит представлять себе, будто Бог запускает эффект Холла левой рукой, некий другой эффект – правой рукой, а затем определяет результат. В природе просто имеется сложность, которую мы можем удивительным образом анализировать. Мы делаем это, различая в уме большое количество различных законов. Мы делаем это, наблюдая в лаборатории чистые, изолированные явления.

У нас есть идея большого количества законов природы, складывающихся в “результирующий”. Эта метафора исходит из механики. Имеется одна сила и другая сила, один вектор и другой вектор, и с помощью двух угольников можно нарисовать диаграмму, которая покажет, что происходит в результате. Однако Джон Стюарт Милль уже давно заметил, что этот факт из механики не подлежит обобщению. Большая часть науки отлична от механики.

В эпоху Возрождения слово “явление” означало по преимуществу солнечные и астрономические закономерности и аномалии. Те, кто не разделяют моей фантазии, могут представлять, что задолго до того, как Бог создал Солнце и Землю, он имел в уме некоторую Универсальную Теорию Поля. Когда он создавал небо и землю, то они были подчинены гравитационным и другим полевым принципам. С тех пор, по нашим представлениям, законы существовали всегда. Но явления или то, что старые астрономы называли явлениями, не существовали до того момента, как была сотворена наша часть вселенной. Я считаю, что также и эффект Холла не существовал до тех пор, пока Холл не понял, как его выделить, очистить и создать в своей лаборатории. Чтобы привести более свежий пример, напомним, что 20 лет назад во вселенной не существовало мазеров и лазеров. Может быть это и не так, может быть, существовал один или два (некоторые космологические явления недавно были объяснены как мазерные). Теперь же во вселенной имеются десятки тысяч лазеров, большая часть которых находится в пределах трех или четырех миль от того места, где я сейчас пишу.

Редкость явлений

Не случайно, что в эпоху Возрождения слово “явление” применялось преимущественно по отношению к небесным событиям. Не случайно также, что теперь астрономия – наиболее уважаемая из древних эмпирических наук. Одна из хороших, хотя и непроверенных гипотез заключается в том, что огромное разнообразие гигантских земляных сооружений, каменные кольца, Стоунхендж, храмы народа Майя и т. п. объекты, разбросанные по всем частям света, были построены огромной ценой, для того чтобы изучать звезды или приливы. Почему старая наука почти на каждом континенте развивалась, начиная с изучения звезд? Потому, что лишь небо предоставляет некоторые явления непосредственно, а все другие добываются – с помощью тщательного исследования и сопоставления. На фоне всеобщего хаоса только планеты и более отдаленные тела подчиняются правильной комбинации сложных закономерностей.

Но разве Бог не предоставил человечеству возможность заметить другие явления, отличные от небесных, такие как приливы и другие периодические явления, например, менструацию? Мне скажут, что мир полон очевидных явлений. В связи с этим будут приводить всякого рода аргументы пасторального характера. Но все они по-преимуществу упоминаются городскими философами, которые ни разу в жизни не собирали зерно и не доили козу. (Множество моих размышлений о недостатке явлений в мире происходят из моих ранних утренних наблюдений за дойкой нашей козы Медеи. Годы ежедневных наблюдений помешали нам сделать какие-либо истинные обобщения относительно Медеи, разве, может быть, то, что “Она часто своенравна”.) Когда я говорю, что в мире мало явлений, мне приводят в ответ традиционные практические знания матерей и охотников, моряков и поваров. И все же, когда мы говорим с романтиком, который советует нам стать мудрее и вернуться к природе, нам советуют не подмечать ее явления, а стать частью ее ритма. Кроме того, большая чать вещей, которые называются природными, например, дрожжи для закваски хлеба, имеют длинную технологическую историю.

За пределом планет, звезд и приливов, в природе существует достаточно мало явлений, ожидающих своего наблюдения. Каждый вид растений и животных имеет свои привычки, и я полагаю, что каждая из них может быть названа явлением. Может быть, история природы также полна явлений, как и ночное небо. Каждый раз, когда я говорю, что в природе существует столько-то явлений, которые предстоит наблюдать, скажем 60, мне мудро напоминают о существовании и других явлений. Но даже тот, кто составит самый длинный список, согласится, что большинство явлений современной физики было изготовлено. Явления, относящиеся к видам – например, заключающееся в том, что лев-самец во время охоты лишь страшно рычит, сидя неподвижно у своего жилища, в то время как самки преследуют и загоняют испуганную газель, – относятся лишь к единичным курьезным случаям. Но явления физики – эффект Фарадея, эффект Холла, эффект Джозефсона служат ключами, открывающими вселенную. Люди создают ключи, но также, видимо, и замки, которые ими открываются.

Эффект Джозефсона

Было давно известно, что при температуре около 4° К происходит масса занятных вещей. Вещества становятся сверхпроводящими, так что сменив тепловой режим и индуцируя ток в замкнутой электрической цепи, можно получить вечный электрический ток. Что произойдет, если сверхпроводники будут разделены тонким листом электроизолятора? Что произойдет, если два сверхпроводника будут соединены батареей? В 1962 году Брайан Джозефсон предсказал, что между двумя сверхпроводниками, разделенными изолятором, будет течь ток. Более того, если присоединить батарею, то возникнет режим автоколебаний.

Эффект Джозефсона выводим из теории сверхпроводимости, которую пятью годами ранее выдвинули Дж. Бардин, Дж. Н. Купер и Дж. Р. Шриффер (теория BCS *). Сверхпроводимость – это движение пар электронов, называемых куперовскими парами, которые не встречают никакого препятствия в охлажденном теле. Для того чтобы ток прекратился, все куперовские пары должны одновременно остановиться. Это происходит так же часто, как закипание воды в холодильнике. Когда сверхохлажденное тело нагревается, электроны разделяются, блуждая заходят в атом или что-либо еще и останавливаются. Джозефсон понял, что куперовские пары будут проходить через изолятор, создавая ток Джозефсона. Возможно, что этот удивительный эффект не был бы установлен, если бы уже не существовала теория BCS. Такая гипотеза могла бы показаться теперь анахронизмом, поскольку основная идея связана с квантованием электронного потока, о котором в то время много говорили. Только недавно квантование потока стало “очевидным” следствием теории BCS. Каковы бы ни были реальные тонкости, связанные с фактами, мы можем отметить все разнообразие явлений. Фарадей обнаружил свой магнитооптический эффект, потому что надеялся найти взаимодействие между электромагнетизмом и светом. Холл обнаружил свой эффект, потому что электродинамика Максвелла предполагала, что должно существовать два или три взаимодействия. Джозефсон обнаружил свой эффект, сделав блестящий вывод из теоретических посылок. Холл не “подтверждал” теории Максвелла, хотя и добавил еще один факт в духе Максвелла. Джозефсон в самом деле подтвердил новую теорию сверхпроводимости, но не потому, что теория дает наилучшее объяснение этого явления, а потому, что никому бы не пришло в голову создавать именно это явление без теории.

В последнем абзаце я сменил способ выражения: от нахождения эффекта к созданию явления. Это сделано намеренно. Эффект Джозефсона не существовал в природе до тех пор, пока у людей не было соответствующей аппаратуры. Эффект не предшествовал теории. Разговоры о создании явлений становятся наиболее убедительными, когда явление предшествует какой-либо сформулированной теории, но это не обязательно. Множество явлений создается после теории.

Эксперименты не идут

Нет более известного изречения, чем утверждение о том, что экспериментальные результаты должны быть повторяемы. На мой взгляд, это звучит как тавтология. Эксперимент – это создание явлений, а явления должны обладать различимой закономерностью, так что эксперимент, который не повторяем, не может создать явление.

У студентов другой опыт. Больше не существует общего мнения о том, что теоретический курс “надо оценивать” в лаборатории: эксперименты не идут, числа нужно подгонять, реагенты не реагируют, колония бактерий не растет. Лабораторию нужно усовершенствовать!

С этой проблемой сталкиваются не только на стадии обучения. В моем университете есть некий очень сложный и дорогой прибор X. Таких приборов в мире очень мало, может быть, только наш прибор работает очень хорошо. Это такой прибор, для работы с которым нужно заказывать время за год вперед, и ваша заявка будет бесконечно обсуждаться, после чего вам разрешают поработать на приборе два дня. Молодой энтузиаст A получает с помощью прибора X впечатляющие результаты. Признанный и опытный в той же области специалист B приезжает поработать два дня и терпит неудачу. Он предлагает с пристрастием посмотреть на результаты работы A. В самом ли деле A получил то, о чем он заявляет, или он всех обманывает? (Это подлинная история, основанная на случае, произошедшем с некоторым профессором, на чью работу мне довелось писать рецензию).

Конечно, в настоящее время некоторые лабораторные курсы просто ужасны. Порой уже старый B не имеет нужной сноровки, а может быть, молодой A действительно вводит всех в заблуждение. Тем не менее, парадоксальность обобщения заключается в том, что большая часть экспериментов большую часть времени “не идут”. Игнорировать этот факт означает забыть то, в чем, собственно, заключается эксперимент.

Экспериментирование означает создание, производство, уточнение и приведение к устойчивости явлений. Если явления были бы разнообразны по своей природе и их также легко можно было бы собирать, как лесные ягоды, то было бы удивительно, если бы эксперименты не шли. Но получение устойчивых явлений – тяжелый процесс. Вот почему я говорю о создании, а не просто об открытии явлений. Это долговременная трудная задача.

Или, скорее, это бесконечное число различных задач. Среди них – разработка эксперимента, который бы пошел, а также обучение тому, как сделать так, чтобы эксперимент пошел. Но, наверное, подлинное мастерство заключается в том, чтобы понять, когда эксперимент в самом деле идет правильно. Это одно из объяснений того, почему наблюдение, в научно-философском смысле этого слова, играет относительно малую роль в экспериментальной науке. Описание эксперимента у оксфордских философов, выглядящее как считывание и записывание показаний приборов, не имеет отношения к реальности. То, что имеет реальное значение, – это необыкновенная способность замечать все странное, неправильное, поучительное или искаженное в причудливом поведении приборов. Экспериментатор – не “наблюдатель” в смысле традиционной философии науки, а скорее бдительная и наблюдательная личность. Только когда экспериментатор наладит свои приборы, он может получать и записывать наблюдения. Но это уже пикник в конце пути.

Ученик в школьной лаборатории в основном приобретает (или не приобретает) умение распознавать удачный ход эксперимента. Уже все продумано, все разработано, все собрано, но чего-то все равно не хватает. Умение распознавать правильный ход эксперимента конечно включает понимание того, как работает аппаратура, что позволяет знать, как ее настроить. Лабораторный курс, в котором все эксперименты прошли удачно, был бы прекрасным с точки зрения технологии, но не научил бы абсолютно ничему в проведении эксперимента. С другой стороны, не удивительно, что молодой энтузиаст A получает результаты, а знаменитый B не получает их. Дело в том, что A имел возможность лучше узнать аппаратуру, он сам изготовил какие-то ее части и помучился, исправляя неполадки. Все это неотъемлемая часть знания того, как создать явление.

Повторение экспериментов

Мнение об обязательной воспроизводимости эксперимента давно считается фольклором. Это породило философскую псевдопроблему. Очевидно, что многообразие экспериментов более убедительно, чем повторение одного и того же события. Таким образом, философы пытались либо показать, что повторения настолько же важны как и первый эксперимент, или стремились объяснить с помощью теории вероятностей, почему повторения менее ценны. Это псевдопроблема, поскольку, грубо говоря, никто никогда не повторяет эксперимента. Обычно серьезные повторения эксперимента являются попытками сделать то же самое лучше – породить более устойчивый, менее зашумленный вариант явления. При повторении эксперимента обычно используются разные виды оборудования. Время от времени люди просто не верят в результаты эксперимента и пытаются повторить его вновь. Примером могут служить истории, связанные со свободными кварками, а также работа по гравитационным волнам. Двадцать лет назад появилось сенсационное сообщение о том, что некоторый вид червей можно научить делать лабиринты, и если скормить обученных червей их собратьям, то и эти каннибалы будут хорошо делать лабиринты. Эксперимент повторили, поскольку никто не поверил в результаты. И тоже вполне обоснованно.

В школах и институтах эксперименты повторяются до тошноты. Цель этих ученических упражнений никогда не заключается в том, чтобы проверить или разработать теорию. Их цель состоит в том, чтобы научить людей тому, как стать экспериментаторами и отсеять тех, для кого экспериментальная работа вряд ли будет подходящей профессией.

Может показаться, что существует одна область, в которой эксперименты должны повторяться. Это имеет место тогда, когда мы пытаемся провести точные измерения таких природных констант как, например, скорость света. Может показаться, что мы должны проделать множество замеров и усреднить их. Как еще мы могли бы определить то, что свет движется со скоростью 299792,5 ñ 0,4 км/с? Но даже в такой области ожидается именно лучший эксперимент, а не повторение менее удачных попыток на менее совершенном оборудовании. К. Д. Фроом и Л. Эссен пишут в своем обзоре “Скорость света и радиоволны” следующее (стр. 139):

“Мы повторим нашу философскую позицию относительно экспериментальных измерений. Их наиболее важная цель состоит в повышении точности измерений, так чтобы систематические ошибки могли бы быть измерены и устранены. Опыт показывает, что широко применяемое усреднение неизменно оставляет систематические погрешности, о которых мы не подозреваем. Мы не видим преимущества в том, чтобы использовать огромное количество измерений, как это делалось в классических методах оптики и в некоторых других современных измерениях. Мы так же считаем неоправданным брать дисперсию по отношению к среднему вместо того, чтобы вычислять ее по единичному наблюдению, поскольку остаточная систематическая погрешность не устраняется при использовании дополнительных измерений.”

С точки зрения точности, единственными измерениями, которые превзошли измерения Эссена (1950), а также Хансена и Бола (1950), были измерения Фроома 1958 года.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: