Проверка гипотез о законе распределения и однородности выборок

Для установления теоретического закона распределения случайной величины Х по опытным данным (эмпирическому распределению) необходимо определить вид и параметры закона распределения. Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Пусть необходимо проверить нулевую гипотезу H0 о том, что исследуемая случайная величина Х подчиняется определенному закону распределения. Для проверки гипотезы H0 выбирают некоторую случайную величину U, характеризующую степень расхождения теоретического и эмпирического распределения. Зная закон распределения U, можно найти такое критическое ее значение uкр, что вероятность мала. Поэтому, если наблюдаемое значение , гипотезу H0 отвергают, в противном случае H0 принимают.

С помощью критерия согласия (Пирсона) можно проверить гипотезу о различных законах распределения генеральной совокупности (равномерном, нормальном, показательном и др.) Для этого в предположении о конкретном виде распределения вычисляются теоретические частоты , и в качестве критерия выбирается случайная величина

,

имеющая закон распределения χ 2 с числом степеней свободы k = m – 1 – r, где m – число частичных интервалов выборки, r – число параметров предполагаемого распределения. Критическая область выбирается правосторонней, и граница ее при заданном уровне значимости α находится по таблице критических точек распределения χ 2.

Теоретические частоты вычисляются для заданного закона распределения как количества элементов выборки, которые должны были попасть в каждый интервал, если бы случайная величина имела выбранный закон распределения, параметры которого совпадают с их точечными оценками по выборке, а именно:

а) для проверки гипотезы о нормальном законе распределения = пРi, где п – объем выборки, xi и xi + 1 – левая и правая границы i -го интервала, - выборочное среднее, s – исправленное среднее квадратическое отклонение. Поскольку нормальное распределение характеризуется двумя параметрами, число степеней свободы k = n – 3;

б) для проверки гипотезы о показательном распределении генеральной совокупности в качестве оценки параметра λ принимается . Тогда теоретические частоты = пРi, . Показательное распределение определяется одним параметром, поэтому число степеней свободы k = n – 2;

в) для проверки гипотезы о равномерном распределении генеральной совокупности концы интервала, в котором наблюдались возможные

значения Х, оцениваются по формулам:

Тогда плотность вероятности

Число степеней свободы k = n – 3, так как равномерное распределение оценивается двумя параметрами.

Пример.

Для выборки, интервальный статистический ряд которой имеет вид

Номер интервала Границы интервала Эмпирические частоты
  2 – 5  
  5 – 8  
  8 – 11  
  11 – 14  
  14 – 17  
  17 – 20  

проверить при уровне значимости α = 0,05 гипотезу о:

а) показательном; б) равномерном; в) нормальном

законе распределения генеральной совокупности с помощью критерия Пирсона.

Решение.

Объем выборки п = 70. Будем считать вариантами середины частичных интервалов: х 1 = 3,5, х 2 = 6,5,…, х 6 = 18,5.

Найдем = 11,43; σВ = 4,03; s = 4,05.

а) Вычислим теоретические частоты в предположении о показательном распределении генеральной совокупности при

аналогично Наблюдаемое значение критерия Критическая точка χ 2(0,05;4)=9,5; и гипотеза о показательном распределении отклоняется.

б) Для равномерного распределения

теоретические частоты: Наблюдаемое значение критерия Критическая точка и гипотеза о равномерном распределении отклоняется.

в) Теоретические частоты для нормального распределения:

Так же вычисляются Наблюдаемое значение критерия Критическая точка Поскольку гипотеза о нормальном распределении генеральной совокупности принимается.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: