Раздел 1. Математический анализ

Методы решения систем линейных уравнений с двумя и тремя переменными.

Понятие системы линейных уравнений

Уравнение называется линейным, если оно содержит переменные только в первой степени и не содержит произведений переменных.

Например, уравнение - линейное, а уравнения и не являются линейными.

В общем виде система m линейных уравнений с n переменными записывается так:

. (1)

Числа

называются коэффициентами при переменных, а - свободными членами.

Совокупность чисел называется решением системы (1) линейных уравнений, если при подстановке их вместо переменных во все уравнения они обращаются в верные равенства.

Метод подстановки

При решении системы линейный уравнений методом подстановки сначала из какого-нибудь уравнения выражают одну переменную через другую (другие, если неизвестных больше двух). Полученное выражение подставляют в другие уравнения, в результате чего приходят к уравнению с одной переменной. Затем находят соответствующее значение второй (и третьей, если она есть) переменной.

Начнём со вполне школьного примера системы двух линейных уравнений с двумя переменными.

Пример 1. Решить систему линейных уравнений методом подстановки:

Выразим из первого уравнения данной системы y через x (можно и наоборот) и получим:

Подставив во второе уравнение данной системы вместо y выражение , получим систему

Данная и полученная системы равносильны. В последней системе второе уравнение содержит только одну переменную. Решим это уравнение:

Соответствующее значение y найдём, подставив вместо x число -5 в выражение , откуда

Пара (-5; 2) является решением системы линейных уравнений.

Методом подстановки можно решать и системы трёх линейных уравнений с тремя переменными.

Пример 2. Решить систему линейных уравнений методом подстановки:

Из третьего уравнения системы выразим :

.

Подставим это выражение во второе уравнение данной системы:

.

Произведём преобразования и выразим из этого уравнения :

Полученные выражения для и подставим в первое уравнение системы и получим

.

Вместо можно вновь подставить его выражение, тогда получим уравнение с одним неизвестным:

откуда

.

Теперь из ранее полученных выражений для остальных переменных найдём и эти переменные:

Итак, решение данной системы линейных уравнений:

.

Пример 3. Решить систему линейных уравнений методом подстановки:

Из первого уравнения системы выразим :

.

Подставим это выражение во второе уравнение данной системы, после чего выполним преобразования и получим:

Из третьего уравнения выразим :

Полученное выражение для подставим в преобразованное второе уравнение системы и получим уравнение с одним неизвестным:

.

Произведём преобразования и найдём :

Теперь из ранее полученных выражений для остальных переменных найдём и эти переменные:

Итак, решение данной системы линейных уравнений:

.

Метод сложения

При решении систем линейных уравнений методом сложения уравнения системы почленно складывают, причём одно или оба (несколько) уравнений могут быть умножены на различные числа. В результате приходят к эквивалентной (равносильной) системе линейных уравнений, в которой одно из уравнений содержит только одну переменную.

Пример 4. Решить систему линейных уравнений методом сложения:

Решение. В уравнениях данной системы в этом примере системы коэффициенты при y - противоположные числа. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной:

, или , .

Заменим одно из уравнений исходной системы, например, первое, уравнением . Получим систему

Решим полученную систему. Подставив значение в уравнение , получим уравнение с одной переменной y:

Пара (2; 1) является решением полученной системы линейных уравнений. Она является также решением исходной системы, так как эти две системы линейных уравнений равносильны.

Пример 5. Решить систему линейных уравнений методом сложения

Почленное сложение уравнений системы не приводит к исключению одной из переменных. Но если умножить все члены первого уравнения на -3, а второго уравнения на 2, то коэффициенты при x в полученных уравнениях будут противоположными числами:

Почленное сложение уравнений полученной в результате преобразований системы приводит к уравнению с одной переменной: . Из этого уравнения находим, что . Получили

Решением полученной системы, а следовательно и исходной системы линейных уравнений является пара чисел (-3; 0).

Пример 6. Решить систему линейных уравнений методом сложения:

Решение. Для упрощения решения произведём замену переменных:

, .

Приходим к системе линейных уравнений:

или

Умножим второе уравнение полученной системы на -2 и сложим с первым уравнением, получим , . Тогда .

Следовательно, имеем систему уравнений

или

Умножим второе уравнение полученной системы на 3 и сложим с первым уравнением. Получим

.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: