Двойные звёзды. Определение массы звёзд

Среди звёзд, которые видны на небе рядом, различают оптические двойные и физические двойные звёзды. В первом случае такие две звезды хотя и видны вблизи, но находятся в пространстве далеко друг от друга. Если же в результате наблюдений выясняется, что они образуют единую систему и обращаются вокруг общего центра масс под действием взаимного тяготения, то они называются физическими двойными звёздами.

Первым, кто доказал, что такие звёзды действительно существуют, был известный английский астроном Вильям Гершель (1738—1822). Множество двойных звёзд открыл и исследовал В. Я. Струве. В настоящее время известно уже более 70 тыс. этих объектов. Когда число звёзд в системе, связанной взаимным тяготением, оказывается более двух, то их называют кратными. В настоящее время считается, что большинство звёзд (более 70%) образуют системы большей или меньшей кратности. В зависимости от того, каким способом можно обнаружить двойственность звезды, их называют по-разному. Если она заметна при непосредственных наблюдениях в телескоп, то это визуально-двойная звезда. Если же об этом можно судить только по спектру, то это спектрально-двойная звезда.

Редким примером двойной звезды, оба компонента которой различимы даже невооружённым глазом, являются Мицар и Алькор в созвездии Большой Медведицы. Среди ярчайших звёзд также были обнаружены двойные: Сириус, Капелла, Кастор и др. Более того, оказалось, что во многих случаях каждая из звёзд такой пары сама состоит из нескольких звёзд. Так, Мицар и Капелла имеют в своём составе четыре компонента, а Кастор — шесть. Выяснилось, что α Центавра является тройной звездой, одна из которых расположена ближе всего к нам и получила название Проксима (в переводе с греческого «ближайшая»).

У двойных звёзд, каждый компонент которых можно наблюдать в отдельности, периоды обращения вокруг общего центра масс обычно бывают от нескольких лет до нескольких сотен или даже тысяч лет. Их орбиты сравнимы по размерам с орбитами планет-гигантов. Большинство спектрально-двойных звёзд имеют периоды обращения порядка нескольких суток, располагаясь друг от друга на расстоянии 5—7 млн км. Самый короткий из известных периодов составляет всего 2,6 ч.

Несмотря на многочисленность двойных звёзд, достаточно надёжно определены орбиты лишь примерно для сотни из них. При известном расстоянии до этих систем использование третьего закона Кеплера позволяет определить их массу. Сравнивая движение спутника звезды с движением Земли вокруг Солнца, можно написать:

= ,

где m 1 и m 2 — массы компонентов звёздной пары; M 1 и M 2 — массы Солнца и Земли; T 1 — период обращения звёзд; T 2 — период обращения Земли; A — большая полуось орбиты двойной звезды; a — большая полуось земной орбиты. Выражая период обращения в двойной системе T в годах (периодах обращения Земли), большую полуось орбиты A в а. е. (расстояниях между Солнцем и Землёй), получаем суммарную массу системы в массах Солнца:

m 1 + m 2 = A 3: .

Чтобы определить массу каждой звезды, надо изучить движение каждой из них и вычислить их расстояния A 1 и A 2 (A = A 1 + A 2) от общего центра масс. Тогда мы получим второе уравнение:

m 1: m 2 = A 2: A 1.

Решая систему двух уравнений, можно вычислить массу каждой звезды.

У спектрально-двойных звёзд наблюдается смещение (или раздвоение) линий в спектре, которое происходит вследствие эффекта Доплера. Оно меняется с периодом, равным периоду обращения пары. Если яркости и спектры звёзд, составляющих пару, сходны, то в спектре наблюдается периодическое раздвоение линий (рис. 5.16, а). Пусть компоненты A и B занимают положения A 2 или B 2, когда один движется по направлению к наблюдателю, а другой — от него. Спектральные линии приближающейся звезды сместятся к фиолетовому концу спектра, а удаляющейся — к красному. Линии в спектре будут раздвоены. В положениях A 1 и B 1 оба компонента движутся перпендикулярно лучу зрения, и раздвоения линий не наблюдается. Если одна из звёзд настолько слаба, что её линии не видны, то будет наблюдаться периодическое смещение линий более яркой звезды (рис. 5.16, б).

Рис. 5.16. Раздвоение линий в спектре двойной звезды

Для наблюдателя, который находится в плоскости орбиты спектрально-двойной звезды, её компоненты будут поочерёдно загораживать, «затмевать» друг друга. Такие звёзды называют затменно-двойными или алголями — по названию наиболее известной звезды этого типа β Персея. Её арабское название «эль гуль» (дьявол) постепенно превратилось в Алголь. Возможно, что ещё древние арабы заметили странное поведение этой звезды: в течение 2 суток 11 часов её яркость остаётся постоянной, но затем за 5 часов она ослабевает от 2,3 до 3,5 звёздной величины, а за следующие 5 часов её прежняя яркость восстанавливается (рис. 5.17).

Рис. 5.17. Схема затмений и кривая блеска Алголя

В настоящее время известно более 5 тыс. затменно-двойных звёзд. Их изучение позволяет определить не только характеристики орбиты, но также получить некоторые сведения о самих звёздах. Продолжительность затмения даёт возможность судить о размерах звезды. Рекордсменом здесь является ε Возничего, в системе которой при периоде 27 лет затмение продолжается 2 года. Когда во время затмения свет одной звезды проходит через атмосферу другой, можно детально исследовать строение и состав этой атмосферы. Форма кривой блеска некоторых звёзд свидетельствует о том, что их форма существенно отличается от сферической (рис. 5.18). Близкое расположение компонентов приводит к тому, что газы из атмосферы одной звезды перетекают на другую. Иногда эти процессы принимают катастрофический характер, и наблюдается вспышка новой звезды.

Рис. 5.18. Кривая блеска несферической двойной звезды

 

Определение масс звёзд на основе исследований двойных звёзд показало, что они заключены в пределах от 0,03 до 60 масс Солнца. При этом большинство из них имеют массу от 0,3 до 3 масс Солнца. Очень большие массы встречаются крайне редко.

Методы изучения спектрально-двойных и затменно-переменных звёзд в настоящее время используются также для поиска планет, обращающихся вокруг других звёзд (экзопланет). К концу 2009 г. было подтверждено открытие около 400 экзопланет, которые составили 340 планетных систем. В их числе было 42 системы, содержавшие не менее двух планет, а одна — не менее 5. Большинство этих планет оказались газовыми гигантами типа Юпитера и Сатурна.

Теперь усилия учёных направлены на поиски планет, которые по своим размерам и массе похожи на Землю и находятся недалеко от звёзд, что обеспечило бы на поверхности планеты условия, необходимые для существования жизни. С этой целью был запущен КА «Кеплер», на котором установлен фотометр, чувствительность которого составляет 10–5. Он позволяет заметить ослабление потока света от звезды, вызванное прохождением планет по её диску, всего лишь на одну стотысячную его долю. «Кеплер» исследовал свыше 52 тыс. звёзд в небольшой области неба между созвездиями Лебедя и Лиры. За 2 года работы было найдено более 2300 звёзд, у которых подозревается наличие планет. В 246 случаях это могут быть планеты, которые по размерам сравнимы с Землёй. Ещё не для всех заподозренных случаев получено окончательное подтверждение наличия планет. Однако даже эти предварительные результаты позволяют надеяться, что число экзопланет в нашей Галактике окажется больше, чем считалось ранее. Об этом говорит и открытие 2016 г.: планета с массой всего в 1,3 массы Земли была открыта у ближайшей к Солнцу звезды — Проксимы Центавра.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: