Схема атомной бомбы «Малыш», сброшенной на Хиросиму

Ядерной взрывчаткой в бомбе служил уран-235, разделенный на две части, масса которых была меньше критической. Необходимая для взрыва критическая масса урана-235 создавалась в результате соединения обеих частей «методом пушки» с помощью обычной взрывчатки.

 3. Состав ядра атома. Изотопы. Энергия связи ядра атома.

В 1932 г. английский физик Джеймс Чедвик открыл частицы с нулевым электрическим зарядом и единичной массой. Эти частицы назвали нейтронами. Обозначается нейтрон п. После открытия нейтрона физики Д. Д. Иваненко и В. Гейзенберг в 1932 г. выдвинули протонно-нейтронную модель атомного ядра. Согласно этой модели, ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов — нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. Например, ядро атома кислорода Осостоит из 8 протонов и 16 – 8 нейтронов. Ядро атома  состоит из 92 протонов и 235 - 92 = 143 нейтронов.

Химические вещества, занимающие одно и то же место втаблице Менделеева, но имеющие разную атомную массу, называются изотопами. Ядра изотопов отличаются числом нейтронов. Например, водород имеет три изотопа: протий — ядро состоит из одного протона, дейтерий — ядро состоит из одного протонаи одного нейтрона, тритий   -ядро состоит из одного протона и двух нейтронов.

Если сравнить массы ядер с массами нуклонов, то окажется, что масса ядра тяжелых элементов больше суммы масс протонов и нейтронов в ядре, а для легких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре. Следовательно, существует разность масс между массой ядра и суммой масс протонов и нейтронов, называемая дефектом массы. М = Мядра — (Мр + Мn).

'Гак как между массой и энергией существует связь Е =mc2, то при делении тяжелых ядер и при синтезе легких ядер должна выделяться энергия, существующая из-за дефекта масс, и эта энергия называется энергией связи атомного ядра. Eсв=Мс2

Выделение этой энергии может происходить при ядерных реакциях Ядерная реакция — это процесс изменения заряда ядра и его массы, происходящий при взаимодействии ядра с другими ядрами или элементарными частицами. При протекании ядерных реакций выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых: чисел) конечных продуктов (ядер и частиц) реакции.

 

 4.Цепная ядерная реакция.

Цепная ядерная реакция - самоподдерживающаяся реакция деления тяжелых ядер, в которой непрерывно воспроизводятся нейтроны, делящие все новые и новые ядра.

Цепнаяреакция практически осуществляетсялишь на трех изотопах. Один из них - U,  который присутству­етв природномуране (0,7%), а два других - U и Pu

получают искусственно.

Ядро урана-235 под действием нейтрона делится на два радиоактивных осколка неравной массы, разлетающихся с большими скоростями dразные стороны, и два-три нейтрона. Например:

n+ U→ Ba+ Kr+3 n

n+ U→ Xe+ Sr+2 n

 

Нейтроны, вылетающие из ядра, могут вызвать  реакцию деления соседних ядер U, которые испускают нейтроны, способные вызвать дальнейшее деление. В результате число делящихся ядер урана быстро растет, возникает цепная реакция (рис. 1).

Скорость нарастания цепной ядерной реакции характеризуют величиной, называемой коэффициентом размножения нейтронов.

Коэффициент «к» размножения нейтронов характеризует быстроту роста числа нейтронов и равен отношению числа нейтронов в одном каком-либо поколении цепной реакции к породившему их числу нейтронов предшествующего поколения.

 

K=

где Ni - число нейтронов в i-поколении, Ni-1 - число нейтронов в предыдущем поколении. Необходимое условие протекания цепной ядерной реакции может быть выражено следующим образом: к >= 1.

 

I поколение нейтронов

                         

 

I I поколение нейтронов

 

 

I I I поколение нейтронов

            Рис. 1

 

При «к = 1» число нейтронов, участвующих в делении ядер, остается неизменным, реакция протекает стационарно, имеет управляемый характер. При «к > 1» число нейтронов увеличивается, интенсивность реакции возрастает и при к > 1,006 может принять неуправляемый характер; при к =1,01 происходит взрыв.

 

К теме о цепной ядерной реакции:

Ядерный реактор - устройство, в котором осуществляется управляемая цепная ядерная реакция. Главной частью ядерного реактора является активная зона с блоками ядерного топлива.

 Управление протеканием ядерной реакции осуществляется с помощью регулирующих стержней (кадмий, карбид бора и др.).

Для увеличения коэффициента размножениянейтронов активную зону окружают отражатели нейтронов.

Так как ядерный реактор является мощным источником нейтронов и γ - излучения, в нем предусмотрена радиационная защита. Для отвода тепла применяется вода, жидкий натрий и др.: трубки с теплоносителем. Для замедления нейтронов в ядерных реакторах используется специальный замедлитель (тяжелая вода или графит).

Наименьшая масса делящегося вещества, при котором может протекать цепная реакция, называется критической массой. При этом «к = 1»: числонейтронов, потерянных вследствие захвата ядрами без деления и утечки, равно числу нейтронов, полученных впроцессе деления.

Для чистого (без замедлителя) Uимеющего форму шара, критическая масса равна

50 кг, а радиус шара - примерно 9 см. Применяя замедлитель нейтронов и отражающую нейтроны оболочку из бериллия, удалось снизить критическую массу до 250 г.

Термоядерные реакции — это реакции синтеза легких ядер, происходящие при высокой температуре (примерно 107К и выше). Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звезд. На Земле термоядерная реакция осуществлена только при экспериментальных взрывах, хотя ведутся международные исследования по управлению этой реакцией.

 

5. Схема образования плутоиия-239 при цепной реакции деления урана-235.

 

нейтрон уран-235

 

 

Делящийся материал - основной компонент ядерного оружия, любой ядерный заряд содержит хотя бы несколько килограммов такого материала. Деление примерно 10 кг урана-235 привело к полному разрушению Хиросимы, а другой японский город - Нагасаки - был испепелен в результате деления 7 кг плутония-239. Уран-235 хотя и встречается в природе, но его концентрация в природном уране слишком низка (примерно 0,7 процента), чтобы из добытого в урановых рудниках сырья можно было бы сразу изготовлять ядерное оружие. Остальные 99,3 процента приходятся на уран-238, в котором цепная реакция деления не возникает. Поэтому для изготовления ядерного оружия природный уран необходимо обогащать делящимся ураном-235. Обычно считается, что концентрация этого взрывоопасного изотопа в обогащенном уране, пригодном для использования в военных целях, должна быть не ниже 20 процентов, Уран, применяемый для производства ядерного оружия в США, содержит более 90 процентов урана-235.

 

В ядерном оружии применяется и другой делящийся изотоп - плутоний-239. Он образуется в ядерных реакторах при цепной реакции деления урана-235. Когда в ядро урана-235 попадает нейтрон, оно делится на два ядра-осколка со сравнительно небольшой массой, и при этом испускаются два или три новых нейтрона. Родившиеся нейтроны бомбардируют другие ядра урана-235, вызывая еще одно деление, а также захватываются ядрами урана-238, в результате цепочки ядерных переходов превращая его в плутоний-239, При делении 1 кг урана-235 получается примерно 900 граммов плутония. Для производства тысячи боеголовок достаточно приблизительно шести тонн плутония.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: