Анализ условия задачи

ИСПОЛЬЗОВАНИЕ ТРИГОНОМЕТРИИ ПРИ РЕШЕНИИ

ПЛАНИМЕТРИЧЕСКИХ ЗАДАЧ

 

Выполнила Яковлева Л. В.

учитель математики МОУ «СОШ №37

с углубленным изучением отдельных предметов»

Научный руководитель –

методист кафедры ЕНД, Хрисанова З. И.

 

Чебоксары – 2008

Содержание

Введение……………………………………………………………………………..........................3

§1.       Место тригонометрии в школьном курсе геометрии……………………………………...4

§2.  Анализ условия задачи.…………………………………………………………………......5

§3.  Сущность и структура решения задач…………………………………………………......8

§4.  Поиск плана решения задачи……………………………………………………………...10

§5.  Классификация планиметрических задач с использованием тригонометрии………………………………………………………………………………………………......11

5.1. Решение задач методом площадей……………………………………………….….11

5.2. Решение задач на применение определения синуса и косинуса угла…………………………………………………………………………………………....16

5.3. Решение задач на применение определения тангенса и котангенса угла…………………………………………………………………………………………....19

5.4. Решение задач на применение теорем синуса и косинуса………………………....22

5.5. Решение задач с применением тождественных преобразований……………….....27

5.6. Решение практических задач с использованием тригонометрии……………….…29

Заключение……………………………………………………………………………………...….32

Список использованной литературы……………………………………………………………..33

Введение

Выбор темы «Использование тригонометрии при решении планиметрических задач» не случаен: несмотря на то, что она начинает изучаться в курсе геометрии, в курсе алгебры, подчас все вопросы приходится рассматривать «с нуля». А ведь тригонометрический материал весьма интересен и специфичен, так как находится на стыке геометрии и алгебры. В настоящее время эта тема актуальна как никогда, поскольку ЕГЭ прочно вошел в систему оценки знаний учащихся. В нем часто встречаются задачи с использованием тригонометрии, и как показали результаты его проведения, ученики очень плохо усваивают тригонометрический материал.

Тригонометрические функции играют важную роль в математике и ее приложениях. Они удобны для описания связи между сторонами и углами треугольников. Использование тригонометрии способствует утверждению взгляда на понятие функции, как на важнейшее понятие математики, связывая тем самым курс алгебры и геометрии. Велико значение тригонометрических функций в формировании диалектического мировоззрения: они, и через их посредство, многие геометрический факты находят применение в непосредственно практической деятельности, в частности, при проведении различных измерительных работ на местности, являются моделью многих периодических процессов (биение сердца, зависимость напряжения в металле от нагрузки на него и т.д.).

Место тригонометрии в школьном курсе геометрии

Сейчас реформируется система образования вообще и математическое образование в частности. Задача школы заключается в формировании у учащихся общекультурных знаний и навыков. А такой подход к среднему образованию неизбежно приведет к перестройке изучения некоторых вопросов и разделов школьной математики. Ведь по окончании школы молодой человек не обязан помнить некоторые формулы и даже целые темы, но у него должно быть представление об основных математических разделах, он должен понимать вклад каждой темы в формирование научных представлений о мире, понимать общекультурную ценность этого материала, его практическое применение, место в структуре всей математики и значение в структурах других наук.

Опыт работы в школе показал, что тригонометрический материал, излагаемый в курсе геометрии по учебникам [1 и 2], оказывает недостаточное влияние на изучение тригонометрии в курсе алгебры, хотя пропедевтическая роль тригонометрического материала, изложенного в курсе геометрии, огромна: от его введения в курсе геометрии будет зависеть, насколько успешным будет изучение тригонометрии в курсе алгебры. Надо прийти к пониманию того, что тригонометрия в геометрии и тригонометрия в алгебре не являются никак не связанными отдельными дисциплинами, это – единый блок, изучение которого невозможно без получения первоначальных сведений о тригонометрии в курсе геометрии.

К тому же в результате начавшейся реформы тригонометрический материал, который ранее изучался в курсе IX класса, был перенесен в X класс. Поэтому на сегодняшний день те учащиеся, которые не пожелали учиться в старшей школе, знакомятся с этой темой только в курсе геометрии.

Это налагает еще большую ответственность на изучение первоначальных тригонометрических сведений в курсе геометрии.

Изучение тригонометрии должно осуществляться таким образом, чтобы у учащихся создалось целостное представление об этой теме. Тригонометрия – достаточно серьезный раздел математики, и к его изучению надо подходить со всей ответственностью. Не следует включать отдельные вопросы тригонометрии в другие разделы. Не следует также разделять материал на блоки, которые рассматриваются в отрыве друг от друга в разных классах, изучение материала надо осуществлять целостно, показывая все возможности применения тригонометрических знаний на примере задач с разумным практическим содержанием.

 

 

Анализ условия задачи

Решение задач – это работа несколько необычная, а именно умственная работа. А чтобы научиться какой-либо работе, нужно предварительно хорошо изучить тот материал, над которым придется работать, те инструменты, с помощью которых выполняется эта работа.

Если приглядеться к любой задаче, то увидим, что она представляет собой требования или вопрос, на который надо найти ответ, опираясь и учитывая те условия, которые указаны в задаче. Поэтому, приступая к решению какой-либо задачи, надо ее внимательно изучить, установить, в чем состоят ее требования (вопросы), каковы условия, исходя из которых надо решать задачу. Все это называется анализом задачи.

Задача1. В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки длиной 5 см и 12 см. Найти катеты треугольника.

Получив задачу, мы, естественно, ее внимательно читаем. Первое, что мы можем заметить, состоит в следующем: в ней имеются определенные утверждения и требования. В ней утверждается, что «в прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки длиной 5 см и 12 см». Требование задачи состоит в том, что нужно «найти катеты треугольника».

Как видим, формулировка любой задачи состоит из нескольких утверждений и требований. Утверждения задачи называются условиями задачи.

Отсюда ясно, что первое, что нужно сделать при анализе задачи, - это расчленить формулировку задачи на условия и требования. Заметим, что в задаче обычно не одно условие, а несколько независимых элементарных (то есть нерасчленимых дальше) условий; требований в задаче также может быть не одно. Поэтому необходимо расчленить все утверждения и требования задачи на отдельные элементарные условия и требования.

В данной задаче можно вычленить такие элементарные условия:

1) треугольник, о котором идет речь в задаче, прямоугольный;

2) в этот треугольник вписана окружность;

3) точка касания окружности с гипотенузой делит ее на два отрезка;

4) длина одного из этих отрезков равна 5 см;

5) длина другого отрезка равна 12 см.

Требования этой задачи можно расчленить на два элементарных.

1) найти длину одного катета треугольника;

2) найти длину другого катета треугольника.

Почему же именно эти условия вычленены из формулировки задачи? Все дело в том, что, производя анализ задачи, вычленяя из формулировки задачи ее условия, мы все время должны соотносить этот анализ с требованием задачи, как бы постоянно оглядываться на требование. Иными словами, анализ задачи всегда направлен на требования задачи.

Для некоторых более сложных задач рассмотренный выше анализ (расчленение задачи на отдельные условия и требования) целесообразно продолжить. А именно установить, как устроены (из чего состоят) вычлененные условия.

Задача2. К двум окружностям, радиусы которых 4 см и 6 см, проведены внутренние общие касательные, оказавшиеся взаимно перпендикулярными. Вычислить расстояние между центрами окружностей.

Эта задача содержит такие условия:

1) дана окружность центра , радиус которого равен 4 см (здесь слово «дано» означает, что эта окружность построена из произвольного центра );

2) из некоторого другого центра  проведена окружность радиуса 6 см;

3) эти две окружности построены так, что к ним можно провести общие внутренние касательные;

4) общие внутренние касательные к этим двум окружностям взаимно перпендикулярны.

Анализируя эти условия, можно заметить, что каждое из них состоит из одного или нескольких объектов и некоторой их характеристики. Так, объектом первого условия является окружность, а ее характеристикой: радиус этой окружности равен 4 см. Во втором условии объектом является также окружность с характеристикой: ее радиус равен 6 см. В третьем условии два объекта: указанные выше две окружности, а характеристикой является их взаимное расположение на плоскости: они расположены так, что к ним можно провести внутренние общие касательные. Наконец, четвертое условие содержит два объекта: общие внутренние касательные к окружностям, в качестве их характеристики указано их отношение: они взаимно перпендикулярны.

Итак, мы видим, что в каждом условии задачи имеется один или два (в некоторых случаях больше) объекта; если в условии один объект, то указывается его характеристика в виде некоторого свойства этого объекта; если же объекта два, то характеристикой служит некоторое отношение этих объектов.

Довольно часто анализ задачи сопряжен с большими трудностями.

Задача3. Две окружности касаются в точке  и касаются одной и той же прямой соответственно в точках  и . Какую фигуру образует множество всех точек , если радиусы данных окружностей будут принимать всевозможные значения?

На первый взгляд кажется, что в задаче речь идет о двух окружностях. Но прочтите еще раз внимательно вопрос задачи: требуется установить, какую фигуру образуют точка  (точка  - переменная). Значит, речь идет о множествах окружностей и множестве точек их касания. Исходя из этого, задачу можно расчленить на такие условия:

1. Дано множество окружностей, каждая из которых касается данной прямой в данной на ней точке .

Здесь объектом является множество окружностей, а их характеристикой – свойство каждой окружности этого множества: она касается данной прямой в точке .

2. Дано множество окружностей, каждая из которых касается данной прямой (с той стороны, что и первое множество окружностей) в данной точке .

Объект и характеристика этого условия аналогичны первому условию.

3. Из этих двух множеств образованы такие пары окружностей, причем первый элемент пары есть окружность первого множества, а второй элемент пары – окружность второго множества, которые взаимно касаются.

Объектом этого условия является множество пар окружностей, а их характеристикой – отношение: окружности, входящие в пару, взаимно касаются.

Заметим, что в это множество пар окружностей войдут не все окружности первого и второго множеств окружностей, а лишь те из них, которые удовлетворяют указанному отношению (взаимное касание).

4.     - есть точка, в которой взаимно касаются соответствующие окружности, входящие в образованные пары (по 3 условию). Объектом этого условия является точка  (переменная точка), а ее характеристикой - свойство: эта точка есть точка касания окружностей, входящих в пару.

5.    Множество точек  есть некоторая геометрическая фигура. Объектом условия является множество точек  взаимного касания окружностей, входящих в пары, а характеристикой – искомое свойство этого множества как геометрической фигуры.

Требование задачи состоит как раз в том, чтобы найти эту последнюю характеристику объекта пятого условия.

Результаты предварительного анализа задач надо как-то зафиксировать, записать. Та словесная, описательная форма записи, которую мы использовали выше, конечно, малоудобна. Более удобной, компактной и в то же время достаточно наглядной формой записи результатов анализа задач является схематическая запись задачи (модель задачи).

Для схематической записи геометрических задач полезно использовать чертеж той фигуры, которая рассматривается в задаче. При построении такого чертежа надо выполнить ряд требований. Укажем главные из них.

1. Чертеж должен представлять собой схематический рисунок основного объекта задачи (геометрической фигуры, или совокупности фигур, или какой-то части этих фигур) с обозначением с помощью букв и других знаков всех элементов фигуры и некоторых их характеристик. Если в тексте задачи указаны какие-либо обозначения фигуры или ее элементов, то эти обозначения должны быть и на чертеже; если же в задаче никаких обозначений нет, то следует воспользоваться общепринятыми обозначениями или придумать наиболее удобные.

2. Этот чертеж должен соответствовать задаче. Это означает, что если в задаче в качестве основного объекта названа трапеция, но не указан ее вид, то не следует строить равнобедренную или прямоугольную трапецию и т.д.

3. При построении чертежа нет надобности выдерживать строго какой-либо определенный масштаб. Однако желательно соблюдать какие-то пропорции в построении отдельных элементов фигуры. Например, если задана медиана треугольника, то соответствующий ей отрезок на чертеже должен проходить приблизительно через середину стороны треугольника и т.д. Точно так же надо соблюдать на чертеже такие отношения, как параллельность, перпендикулярность и др.

4. При построении чертежей пространственных фигур необходимо соблюдать все правила черчения. Там, где это можно и целесообразно, лучше строить какие-либо плоскостные сечения этих фигур.

Кроме чертежа, для схематической записи геометрических задач используется еще краткая запись всех условий и требований задачи. В этой краткой записи, пользуясь принятыми на чертеже обозначениями, записываются все характеристики и отношения, указанные в условиях задачи. Названия фигур или отдельных ее частей желательно заменить записью их определений.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: