Некоторые применения

Задачи идентификации сцен.

Рассмотрим вначале задачи идентификации сцен по их изображения, неискаженным геометрическими преобразованиями, поворотами, изменениями масштаба и т.д. Ограничимся задачами, в которых предъявляемые для анализа изображения получены при изменяющихся и неконтролируемых условиях освещения и неизвестных и, вообще говоря, различных оптических характеристиках сцены.

1). Задачи идентификации при произвольно меняющейся интенсивности освещения.

Можно ли считать f (×) и g (×) изображениями одной и той же сцены, возможно, отличающимя лишь распределениями яркости, например, наличием теней?

В простейшем случае для идентификации достаточно воспользоваться теоремой 5, а именно, f (×) и g (×) можно считать изображениями одной и той же сцены, если существует распределение цвета , для которого v (j (×)) содержит f (×) и g (×). Если , и , то, очевидно, существует , при котором f (xv (j (×)), g(xv (j (×)), а именно, , , если , , если , и, наконец, - произвольно, если .

На практике удобнее использовать другой подход, позволяющий одновременно решать задачи совмещения изображений и выделения объектов. Можно ли, например, считать g (×) изображением сцены, представленной изображением f (×)? Ответ следует считать утвердительным, если

.

Здесь j (×) - распределение цвета на изображении f (×), символ ~ 0 означает, что значение d(g (×)) можно объяснить наличием шума, каких-либо других погрешностей, или, наконец, - наличием или, наоборот, отсутствием объектов объясняющим несовпадение g (×) и f (×) с точностью до преобразования распределения яркостей. Такие объекты, изменившие распределение цвета g (×) по сравнению с распределением цвета f (×), представлены в .

2). Идентификация при произвольном изменении распределения интенсивности и пространственно однородном изменении спектрального состава освещения.

Можно ли считать изображением сцены, представленной на изображении f (×), изображение, полученное при изменившихся условиях регистрации, например, перемещением или изменением теней и изменением спектрального состава освещения?

Пусть П - форма в широком смысле изображения f (×), определенная в теореме @, П* - форма f (×). Тогда ответ на поставленный вопрос можно считать утвердительным, если . Если изменение g (×) обусловлено не только изменившимися условиями регистрации, но также появлением и (или) исчезновением некоторых объектов, то изменения, обусловленные этим последним обстоятельством будут представлены на .

3). Задачи совмещения изображений и поиска фрагмента.

Пусть f (×) - заданное изображение, A ÌX - подмножество поля зрения, c A (×) - его индикатор, c A (×) f (×) -назовем фрагментом изображения f (×) на подмножестве A, представляющем выделенный фрагмент сцены, изображенной на f (×). Пусть g (×) - изображение той же сцены, полученное при других условиях, в частности, например, сдвинутое, повернутое, т.е. геометрически искаженное по сравнению с f (×). Задача состоит в том, чтобы указать на g (×) фрагмент изображения, представляющий на f (×) фрагмент сцены и совместить его с c A (×) f (×).

Ограничимся случаем, когда упомянутые геометрические искажения можно моделировать группой преобразований R2->R2, преобразование изображения назовем сдвигом g (×) на h. Здесь

Q (h): Rn->Rn, h ÎH, - группа операторов. Векторный сдвиг на ÎH даст

.

В задаче выделения и совмещения фрагмента рассмотрим фрагмент сдвинутого на h изображения g (×) в “окне” A:

(100)

причем, поскольку где то в (100) - ограничение на сдвиг “окна” А, которое должно оставаться в пределах поля зрения X.

Если кроме цвета g (×) может отличаться от f (×), скажем, произвольным преобразованием распределения яркости при неизменном распределении цвета и - форма фрагмента f (×), то задача выделения и совмещения фрагмента сводится к следующей задаче на минимум

.(101)

При этом считается, что фрагмент изображения g (×), соответствующий фрагменту c A (×) f (×), будет помещен в “окно”. А путем соответствующего сдвига h=h*, совпадает сc A (×) f (×) с точностью до некоторого преобразования распределения яркости на нем. Это означает, что

.

т.е. в (101) при h=h* достигается минимум.

4). В ряде случаев возникает следующая задача анализа спектрозональных изображений: выделить объекты которые “видны”, скажем, в первом канале и “не видны” в остальных.

Рассмотрим два изображения и . Определим форму в широком смысле как множество всех линейных преобразований : (A - линейный оператор R 2 ->R 2, не зависящий от x ÎX). Для определения проектора на рассмотрим задачу на минимум

. [*]

Пусть , , тогда задача на минимум [*] эквивалентна следующей: tr A*AS - 2trAB ~ . Ее решение (знаком - обозначено псевдообращение).

=

=

Рис.1.

f e - вектор выходных сигналов детекторов, отвечающий излучению e(×), j e - его цвет; j1,j2,j3, - векторы (цвета) базовых излучений, b - белый цвет, конец вектора b находится на пересечении биссектрис.

 

Литература.

[1] Пытьев Ю.П. Морфологические понятия в задачах анализа изображений, - Докл. АН СССР, 1975, т. 224, №6, сс. 1283-1286.

[2] Пытьев Ю.П. Морфологический анализ изображений, - Докл. АН СССР, 1983, т. 296, №5, сс. 1061-1064.

[3] Пытьев Ю.П. Задачи морфологического анализа изображений, - Математические методы исследования природных ресурсов земли из космоса, ред. Золотухин В.Г., Наука, Москва, 1984, сс. хххх-ххххх.

[4] Пытьев Ю.П., Чуличков А.И. ЭВМ анализирует форму изображения, - Знание,сер. Математика, Кибернентика, Москва, 1988, 47 стр.

[5] Yu.P.Pyt’ev. Morphological Image Analysis, Patt. Recogn. and Image Analysis, 1993, v.3, #1, pp.19-28.

[6] Антонюк В.А., Пытьев Ю.П. Спецпроцессоры реального времени для морфологического анализа реальных сцен. Обработка изображений и дистанционное исследования, -Новосибирск, 1981, сс. 87-89.

[7] Антонюк В.А., Пытьев Ю.П., Рау Э.И. Автоматизация визуального контроля изделий микроэлектроники,Радиотехника и электроника, 1985, т. ХХХ,№12, сс. 2456-2458.

[8] Ермолаев А.Г., Пытьев Ю.П. Априорные оценки полезного сигнала для морфологических решающих алглритмов, - Автоматизация, 1984, №5, сс. 118-120.

[9] Пытьев Ю.П, Задорожный С.С., Лукьянов А.Е. Об автоматизации сравнительного морфологического анализа электронномикроскопических изображений, - Изв. АН СССР, сер. физическая, 1977, т. 41, №11, сс. хххх-хххх.

[10] A.A. Stepanov, S.Yu. Zheltov, Yu.V. Visilter. Shape analysis using Pyt'ev morphological paradigm and its using in machine vision. Proc. SPIE - Th. Intern. Soc. For Optical Engineering Videometrics III, 1994, v. 2350, pp. 163-167.

[11] Пытьев Ю.П.. Математические методы интерпретации эксперимента, Высшая школа, 351 стр., 1989.

[12] Майзель С.О. Ратхер Е.С. Цветовые расчеты и измерения. М:Л:Госэнергоиздат 1941, (Труды всесоюзного электротехнического института, вып.56).

[13] P. Kronberg. Fernerkundung der Erde Ferdinand Enke. Verlag Stuthgart 1985.

 

[1] Например, в связи с изменением времени суток, погоды, времени года и т.п.

[2] Фрагмент морфологического анализа цветных изображений содержится в работе[3].

[3] вектор f e будет иметь отрицательные координаты, если он не принадлежит выпуклому конусу

 

[4]черта символизирует замыкание, - выпуклый замкнутый конус в R n.

[5] Если - более детальное изображение, то некоторые A (j) могут “ращепиться” на несколько подмножеств (), на каждом из которых цвет постоянный, но различный на разных подмножествах (). Однако, поскольку форма обычно строится исходя из данного изображения f (×), v(f (×)) не может содержать изображения, которые более детально характеризуют изображенную сцену.

[6] Для простоты яркость изображения считается положительной в каждой точке поля зрения Х.

[7] - класс неотрицательных функций принадлежащих.

[8]Одна и та же буква F использована как для оператора, так и для оператора. Эта вольность не должна вызывать недоразумения и часто используется в работе.

[9]Если m(As)=0, то в задаче наилучшего приближения (18) цвет и распределение яркости на As можно считать произвольными, поскольку их значения не влияют на величину невязки s.

[10]Векторы j1,..., jq выбираются, например, сообразно цветам объектов, представляющих интерес.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: