Основные схемы включения ОУ: инвертирующая, неинвертирующая, дифференциальная и их параметры

 

    Во многих случаях ОУ используют в схемах с ООС. Основными схемами включения являются инвертирующая и неинвертирующая, дифференциальная.

Инвертирующая схема показана на рис. 2.

 

Рис. 2.

 

Резистор  представляет собой внутреннее сопротивление источника сигнала , посредством  ОУ охвачен ||ООСН.

    При идеальном ОУ разность напряжений на входных зажимах стремиться к нулю, а поскольку неинвертирующий вход соединен с общим проводом через резистор , то потенциал в точке а тоже должен быть нулевым ("виртуальный нуль", "кажущаяся земля"). В результате можем записать: , т.е. . Отсюда получаем:

,

т.е. при идеальном ОУ  определяется отношением величин внешних резисторов и не зависит от самого ОУ.

    Для реального ОУ необходимо учитывать его входной ток , т.е.  или , где  - напряжение сигнала на инвертирующем входе ОУ, т.е. в точке а. Тогда для реального ОУ получаем:

.

    Нетрудно показать, что при глубине ООС более 10, т.е. , погрешность расчета  для случая идеального ОУ не превышает 10%, что вполне достаточно для большинства практических случаев.

    Номиналы резисторов в устройствах на ОУ не должны превышать единиц мегом, в противном случае возможна нестабильная работа усилителя из-за токов утечки, входных токов ОУ и т.п. Если в результате расчета величина  превысит предельное рекомендуемое значение, то целесообразно использовать Т-образную цепочку ООС, которая при умеренных номиналах резисторов позволяет выполнить функцию эквивалента высокоомного  (рисунок 6.7б). В этом случае можно записать:

.

На практике часто полагают, что , а величина  обычно задана, поэтому  определяется достаточно просто.

    Входное сопротивление инвертирующего усилителя на ОУ имеет относительно небольшое значение, определяемое параллельной ООС:

,

т.е. при больших  входное сопротивление определяется величиной .

    Выходное сопротивление инвертирующего усилителя в реальном ОУ отлично от нуля и определяется как величиной , так и глубиной ООС F. При F>10 можно записать:

.

    С помощью ЛАЧХ ОУ можно представить частотный диапазон инвертирующего усилителя (см. рисунок 6.6), причем

.

В пределе можно получить , т.е. получить инвертирующий повторитель. В этом случае получаем минимальное выходное сопротивление усилителя на ОУ:

.

    В усилителе на реальном ОУ на выходе усилителя при  всегда будет присутствовать напряжение ошибки , порождаемое  и . С целью снижения  стремятся выровнять эквиваленты резисторов, подключенных к входам ОУ, т.е. взять  (см. рисунок 6.7а). При выполнении этого условия для  можно записать:

.

    Уменьшение  возможно путем подачи дополнительного смещения на неинвертирующий вход (с помощью дополнительного делителя) и уменьшения номиналов применяемых резисторов.

Неинвертирующая схема приведена на рис. 3.

 

Рис. 3.

 

Поскольку  и  подаются на разные входы, то для идеального ОУ можно записать:

,

откуда коэффициент усиления по напряжению неинвертирующего усилителя:

,

или

.

Для неинвертирующего усилителя на реальном ОУ полученные выражения справедливы при глубине ООС F>10.

Входное сопротивление неинвертирующего усилителя велико и определяется глубокой последовательной ООС и высоким значением :

.

Выходное сопротивление неинвертирующего усилителя на ОУ определяется как для инвертирующего, т.к. в обоих случаях действует ООС по напряжению:

.

    Расширение полосы рабочих частот в неинвертирующем усилителе достигается так же, как и в инвертирующем, т.е.

.

    Для снижения токовой ошибки в неинвертирующем усилителе, аналогично инвертирующему, следует выполнить условие:

.

Неинвертирующий усилитель часто используют при больших  (что возможно за счет большого ), поэтому выполнение этого условия не всегда возможно из-за ограничения на величину номиналов резисторов.

Наличие на инвертирующем входе синфазного сигнала (передаваемого по цепи: неинвертирующий вход ОУ  выход ОУ  инвертирующий вход ОУ) приводит к увеличению , что является недостатком рассматриваемого усилителя.

При увеличении глубины ООС возможно достижение , т.е. получение неинвертирующего повторителя, схема которого приведена на рисунке 4.

Рис. 4.

 

Здесь достигнута 100% последовательная ООС по напряжению, поэтому данный повторитель имеет максимально большое входное и минимальное выходное сопротивления и используется, как и любой повторитель, в качестве согласующего каскада.

Для неинвертирующего повторителя можно записать:

,

т.е. напряжение ошибки может достигать довольно большой величины.

        

Дифференциальная схема включения ОУ показана на рис. 5

 

Рис. 5.

 

Дифференциальный (разностный) усилитель на ОУ можно рассматривать как совокупность инвертирующего и неинвертирующего вариантов усилителя. Для  разностного усилителя можно записать:

 

.

 

Как правило,  и , следовательно, . Раскрыв значения коэффициентов усиления, получим:

 

,

 

Для частного случая при  получим:

 

.

Последнее выражение четко разъясняет происхождение названия и назначение рассматриваемого усилителя.

    В разностном усилителе на ОУ при одинаковой полярности входных напряжений имеет место синфазный сигнал, который увеличивает ошибку усилителя. Поэтому в разностном усилителе желательно использовать ОУ с большим коэффициентом ООС. К недостаткам рассмотренного разностного усилителя можно отнести разную величину входных сопротивлений и трудность в регулировании коэффициента усиления. Эти трудности устраняются в устройствах на нескольких ОУ, например, в разностном усилителе на двух повторителях.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: