Особенности применения продольной и поперечной компенсации в воздушных и кабельных эл. Сетях

Метод компенсации реактивной мощности рассмотрим на примере использования конденсаторных батарей. Включение конденсаторных батарей параллельно нагрузке называется поперечной компенсацией, последовательно – продольной компенсацией.

Поперечная компенсация применяется в основном для повышения величины коэффициента мощности cosφ. Коэффициент мощности характеризует качество потребления электроэнергии на предприятии: его снижение приводит к повышению расхода электроэнергии и ее стоимости. При включении мощности параллельно нагрузке угол φ уменьшается, в результате уменьшается ток электроприемника, т.е. происходит разгрузка линии по току. На туже величину разгружается и генератор, за счет чего и

уменьшаются потери.

Продольная емкостная компенсация применяется в основном как способ регулирования и стабилизации напряжения за счет частичной компенсации индуктивного сопротивления участков электросети для уменьшения потерь напряжения в них. Компенсация индуктивного сопротивления емкостью приводит к повышению токов короткого замыкания во всех элементах трансформаторной подстанции, что особенно опасно для самих конденсаторов. Поэтому в установках продольной компенсации емкость выбирается из расчета, чтобы емкостное напряжение не превышало 5...20% номинального, т.е. емкость продольной компенсации компенсирует только часть мощности.

Принципиальная схема продольной компенсации показан на рис. 73. Шунтирующий разъединитель служит для вывода конденсаторов из работы. Для защиты от перенапряжений при сверхтоках используется спекающийся быстродействующий разрядник с токоограничивающим резистором R. Трансформатор напряжения служит для измерения напряжения, а также для разрядки конденсаторов при снятии напряжения.

Основное достоинство устройств продольной компенсации заключается в автоматическом и безынерционном регулировании напряжения. Отсутствие механически движущихся частей и контактов делает эти установки весьма простыми и надежными в эксплуатации. При одинаковом регулирующем эффекте мощность конденсаторов получается в 4–5 раз меньше, чем мощность обычной конденсаторной батареи поперечной компенсации, выбранной только для регулирования напряжения.

Недостатком метода является высокая стоимость установок продольной компенсации и необходимость специальной защиты от токов короткого замыкания.

Продольная компенсация(П.к. до поперечной компенсации), последовательное включение компенсирующих устройств в линию электропередачи (ЛЭП) переменного тока с целью изменения её реактивных параметров. В качестве компенсирующих устройств обычно применяют батареи электрических конденсаторов, подключение которых уменьшает общее индуктивное сопротивление ЛЭП. Ёмкостная П. к. является эффективным средством повышения пропускной способности ЛЭП 220—750 кв, она улучшает статическую и динамическую устойчивость электрических систем. П. к. применяют также для улучшения режима напряжения протяжённых воздушных электрических сетей 6—35 кв (например, в системах электроснабжения промышленных предприятий, с.-х. объектов и т.п.), при быстрых изменениях нагрузки сети (например, при частых включениях двигателей с большими пусковыми токами, при работе сварочных агрегатов и т.п.). Недостатки П. к. — резкое увеличение тока короткого замыкания близ места установки компенсирующих устройств, возможность возникновения в электрической системе резонансных явлений — самовозбуждения, самораскачивания и т.д. Установленная мощность компенсирующих устройств ограничивается условием надёжной работы релейной защиты электропередачи и указанными резонансными явлениями.

Поперечная компенсация(далее П.к.), параллельное включение компенсирующих устройств в электрическую систему в целях изменения реактивных параметров линий электропередачи (ЛЭП) переменного тока и реактивной мощности, потребляемой в системе. В ЛЭП большой протяжённости для П. к. применяют преимущественно реакторы электрические; их устанавливают на электрических подстанциях и переключательных пунктах. Реакторы поглощают реактивную мощность, обусловленную распределённой ёмкостью ЛЭП. Благодаря включению реакторов улучшается распределение напряжения вдоль ЛЭП и создаются условия для повышения пропускной способности электропередачи, снижаются внутренние перенапряжения, обеспечиваются особые режимы ЛЭП (например, холостой ход, синхронизация, автоматическое повторное включение и т.д.). П. к. в электрических сетях осуществляется при помощи батарей конденсаторов электрических, компенсаторов синхронных и синхронных электродвигателей. Посредством этих устройств обеспечивают требуемые значения напряжения и уменьшают потери электроэнергии в электрической сети. Синхронные компенсаторы чаще всего устанавливают на электрических подстанциях районных электрических сетей, батареи электрических конденсаторов — на подстанциях потребителей электроэнергии и непосредственно у потребителей.


31. Основы расчета воздушных линий на механическую прочность.

Механической прочностью воздушных линий называется способность проводов выдерживать механические нагрузки, обусловленные их собственной массой, массой обледенения (так называемого гололеда), действием на провода ветра и температуры. Задачи механического расчета воздушных линий включают:

– расчет напряжений в проводах и сопоставление этих напряжений сдопустимыми значениями; 

– расчет высоты подвеса провода Н (рис. 66), длины пролета l, допустимых расстояний на участках сближения и пересечения воздушной линии с сооружениями и проч. Расчет опор и других элементов воздушной линии (изоляторов, арматуры), как правило, не производится. Эти элементы выбираются из унифицированного ряда с учетом климатических условий.

 

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: