Топическая диагностика заболеваний нервной системы 3 страница

Пилюли с калия перманганатом должны быть фиолетового цве­та, без бурого оттенка (признак разложения). При приготовлении пилюль, включающих малые количества калия перманганата (0,01— 0,03 г на одну пилюлю), пилюльную массу получают без добавления ланолина безводного. В качестве наполнителя используют смесь глины белой с бентонитом в соотношении 2:1.

Rp.: Argenti nitratis 0,1 Massae pilularum q.s., ut fiant pilulae № 20 Da. Signa. По 2 пилюли 3 раза в день

Пилюли с легкорастворимым в воде ядовитым светочувствитель­ным веществом, обладающим окислительными свойствами. В каче­стве наполнителя можно использовать алюминия гидроксид или смесь глины белой с бентонитом. В качестве связывающего — воду глице­риновую или очищенную.

Ступку протирают ватным тампоном, смоченным разведенной азот­ной кислотой (для стабилизации серебра нитрата). Затем в несколь­ких каплях свежеперегнанной воды очищенной растворяют полу­ченный по требованию серебра нитрат. По частям прибавляют бентонит, затем глину белую, перемешивают. По каплям добавляют свежеприготовленную воду глицериновую (или воду очищенную), перемешивают до получения массы мягкой консистенции. Выкаты­вают пилюли, обсыпают их глиной белой, оформляют к отпуску. Пилюли с серебра нитратом должны быть белого цвета (потемнение указывает на восстановление серебра). Применяют их для лечения язвенной болезни желудка.

КОНТРОЛЬ КАЧЕСТВА, ХРАНЕНИЕ И ОТПУСК ПИЛЮЛЬ

Качество приготовленных пилюль контролируют, проверяя их со­ответствие фармакопейным требованиям к форме, отклонениям по массе, однородности в разрезе, распадаемости и др. Поскольку пи­люли могут отсыревать или, наоборот, высыхать, подвергаться мик­робному обсеменению, их необходимо хранить в сухом прохладном месте в соответствии с конкретным сроком хранения. Отпускают пи­люли по общим для всех лекарственных форм правилам в неболь­ших стеклянных баночках или картонных коробках. Пилюли, со­держащие светочувствительные вещества, защищают от действия света. При наличии в пилюлях летучих, пахучих и гигроскопичных веществ отпускная тара должна герметически закрываться.

Структурно-логическая схема технологии и контроля качества пилюль представлена на схеме 16.

РАЗДЕЛ 4

СТЕРИЛЬНЫЕ И АСЕПТИЧЕСКИ ПРИГОТОВЛЯЕМЫЕ ЛЕКАРСТВЕННЫЕ ФОРМЫ

К лекарственным формам, которые должны готовиться в асепти­ческих условиях, относятся: лекарственные формы для инъекций; лекарственные формы для лечения глаз; лекарственные формы с антибиотиками; лекарственные формы для детей.

Все эти лекарственные формы характеризуются тем, что в них не должно содержаться микроорганизмов и их спор.

Необходимость получения стерильных и асептически приготов­ляемых лекарственных форм вызвано особым способом их примене­ния, например, инъекции вводятся в организм через полую иглу с нарушением целостности кожных и слизистых покровов. Наличие в них микроорганизмов может привести к инфицированию организ­ма, а следовательно, к тяжелым последствиям.

Лекарственные формы с антибиотиками требуют асептических условий приготовления, так как в присутствии микроорганизмов антибиотики теряют свою активность.

Перечисленные лекарственные формы независимо от того, под­вергаются они дальнейшей стерилизации или нет, должны готовиться в асептических условиях. Санитарные требования при приготовле­нии лекарств в асептических условиях регламентируются приказом МЗ Украины № 139 от 14.06.93 г. «Об утверждении инструкции по санитарно-противоэпидемическому режиму аптек».

Глава 25

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ

ХАРАКТЕРИСТИКА ЛЕКАРСТВЕННЫХ ФОРМ ДЛЯ ИНЪЕКЦИЙ

К инъекционным лекарственным формам относятся стерильные водные и неводные растворы, суспензии, эмульсии и сухие твердые вещества (порошки, пористые массы, таблетки), которые растворя­ют в стерильном растворителе непосредственно перед введением.

Это специфические лекарственные формы, известные под общим названием инъекции (injectiones).

Лекарства для инъекций начали применяться в медицинской прак­тике немного позднее, чем другие лекарственные формы. Впервые подкожное впрыскивание лекарства было осуществлено в 1851 году русским врачом Лазаревым. Его прибор состоял из барометрической трубки с поршнем, на свободном конце которой был укреплен сереб­ряный наконечник, вытянутый в иглу. Современный шприц был предложен в 1852 году Правацем.

Инъекционный способ введения лекарств имеет положительные стороны и недостатки. К преимуществам его можно отнести следу­ющее:

— полнота всасывания и быстрота действия вводимых лекарствен­ных веществ, иногда через несколько секунд;

— лекарственные препараты вводятся, минуя такие защитные барьеры организма как желудочно-кишечный тракт и печень, где под влиянием ферментов могут изменяться, а иногда и разрушаться лекарственные вещества;

— при этом методе введения полностью исключаются неудобства, связанные с неприятным запахом и вкусом лекарств;

— возможность точно дозировать лекарства;

— возможность локализации действия лекарственных веществ;

— возможность введения лекарства больному, находящемуся в бессознательном состоянии;

— возможность пополнения крови необходимым объемом жид­кости после значительных ее потерь;

— возможность заготовки стерильных лекарств впрок.

В то же время инъекционный способ введения имеет недостатки:

— возникает серьезная опасность внесения инфекций в организм;

— при введении растворов в кровь возникает опасность эмболии вследствие попадания твердых частиц или пузырьков воздуха с диа­метром, превышающим диаметр мелких сосудов (при эмболии сосу­дов, питающих мозг, возможен смертельный исход);

— наносится травма больному как физически, так и морально;

— применение метода введения связано с необходимостью при­влечения медицинского персонала;

— введение лекарств может вызвать сдвиги давления, рН среды и т. д., особенно при введении больших количеств раствора внутри­венно или внутриартериально. Эти физиологические нарушения под­час болезненно воспринимаются организмом (резкая боль, жжение, иногда лихорадочные явления).

Виды инъекций. В зависимости от места введения инъекции делят на: внут-рикожные, подкожные, внутримышечные, внутривенные, внутриартериальные, спинномозговые, внутричерепные, внутрибрюшинные, внутриплевральные, внут­рисуставные и др.

Внутрикожные инъекции — injectiones intracutaneae. При этом спо­собе введения игла прокалывает только эпидермис кожи и жидкость в очень малом количестве вводится в пространство между эпидермисом и дермой. Внут-рикожные инъекции применяют с целью диагностики инфекционных заболева­ний (реакция Пирке), реже с лечебной целью.

Подкожные инъекции — injectiones subcutaneae. Растворы вводятся в подкожную клетчатку. Для подкожных инъекций могут употребляться водные и масляные растворы, а также суспензии и эмульсии. Скорость всасывания за­висит от природы растворителя. Водные растворы всасываются быстро, масля­ные растворы, взвеси и эмульсии — медленно.

Внутримышечные инъекции — injectiones intramusculares. При этом способе введения жидкость вводится в толщу крупной мышцы. Внутримышеч­но можно вводить водные и масляные растворы, тонкие суспензии и эмульсии. По сравнению с подкожной клетчаткой мышцы снабжены большим количе­ством кровеносных сосудов, что обусловливает более быстрое всасывание лекар­ственных препаратов. В то же время внутримышечные инъекции менее болез­ненны, так как мышечная ткань, сравнительно с подкожной клетчаткой, содержит меньше чувствительных нервных окончаний.

Внутривенные инъекции — injectiones intravenosae. Раствор вводится в вену медленно и осторожно. Действие лекарства в этом случае наступает через 1—2 секунды. Внутривенный способ позволяет вводить в организм большие ко­личества жидкости: от 1 до 500 мл, а в некоторых случаях и больше. Часто эти растворы вводят капельным методом (в этом случае раствор вводят в вену не через иглу, а через канюлю со скоростью 40—60 капель в минуту).

Наличие в крови буферной системы, регулирующей величину рН, позволяет вводить в кровь растворы резко кислой или щелочной реакции. При медленном введении даже растворы с рН = 3—10 в небольших объемах (15—20 мл) не вы­зывают заметных осложнений.

Внутрь сосудов можно вводить только водные растворы, хорошо смешиваю­щиеся с кровью (физиологические, кровезаменители, растворы глюкозы и др.). Нельзя вводить в кровь взвеси, эмульсии с диаметром частиц, превышающим диаметр эритроцитов. При внутривенном введении дозу лекарственного веще­ства берут в 3 или 4 раза меньше, чем при приеме через рот.

Внутриартериальные инъекции — injectiones intraarteriales. Раствор вводится в артерию, медленно, осторожно, действие лекарств наступает уже в процессе введения. При внутрисосудистом введении резко возрастает опас­ность эмболии и инфицирования организма.

Спинномозговые инъекции — injectiones cerebrospinales. Жидкость вводится в субарахноидальное или перидуральное пространство позвоночного канала. Для спинномозговых инъекций применяются только истинные водные растворы с рН не менее 5 и не более 8. Обычно этим методом пользуются для введения анестезирующих веществ и антибиотиков.

Условия распространения и резорбции лекарственных веществ в субарахно-идальном и перидуральном пространстве различны. Так, при введении анесте­зирующего раствора в субарахноидальное пространство уже через 5—7 минут наступает так называемая спинальная анестезия, а при инъекции в перидураль-ное пространство — лишь через 20—30 минут.

Всасывание лекарственных веществ в кровь при этом методе введения идет очень медленно. Спинномозговые инъекции должны производиться опытным врачом-хирургом, так как ранение концевой нити спинного мозга может приве­сти к параличу нижних конечностей.

Внутричерепные инъекции — injectiones subarachnoidal. Раствор вводится в расширенную часть субарахноидального пространства, и лекарства действуют мгновенно. Вводятся только истинные водные растворы нейтральной реакции. Метод часто используется для введения пенициллина и стрептомици­на при менингите. Более редко назначаются внутрикостные, внутрисуставные, внутриплевральные и другие инъекции.

В настоящее время применяется метод впрыскивания без иглы. Раствор с помощью специального инъектора вводится под давлением в подкожную клет­чатку без нарушения целостности кожного покрова.

Способ струйного введения лекарственных веществ по сравнению с обычными инъекциями с помощью иглы имеет преимущества: безболезненность инъекций, быстрое наступление эффекта, уменьшение требуемой дозы, невозможность пере­дачи «шприцевых инфекций», более редкая стерилизация инъектора, увеличение количества инъекций, производимых в единицу времени (до 1000 в час).

Безыгольные инъекторы различаются по следующим основным признакам: по глубине введения препарата — для внутрикожных, подкожных, внутримы­шечных инъекций и универсальные: по количеству вводимых доз — много-и однодозовые, по конструкции — с пружинным гидравлическим, электромеха­ническим, электромагнитным и пневматическим приводом.

В настоящее время выпускаются безыгольные инъекторы БИ-1 («Пчелка»), БИ-2, БИ-3, БИ-5. Применение безыгольного инъектора способствует появле­нию самостоятельного высокоэффективного способа парентерального введения.

Требования, предъявляемые к инъекционным лекарственным формам. К инъекционным формам предъявляются следующие тре­бования: отсутствие механических примесей, стерильность, ста­бильность, апирогенность, к отдельным растворам — изотонич-ность, что указывается в соответствующих нормативных документах или рецептах. Инъекционные растворы могут быть изогидричными и изоионичными в соответствии с требованиями частных статей.

Для реализации указанных требований необходимо соблюдение особых условий приготовления инъекционных лекарственных форм, которые предусматривают: требования к помещению, производствен­ному оборудованию, персоналу, лекарственным и вспомогательным веществам, растворителям, укупорочным материалам, организации и проведению технологических процессов (растворение, стабилиза­ция, фильтрация, стерилизация, упаковка, маркировка).

Важнейшей составной частью технологического процесса всех инъ­екционных лекарственных форм является организация работы в асеп­тических условиях и стерилизация.

РАСТВОРИТЕЛИ

При приготовлении инъекционных лекарственных форм в каче­стве растворителей применяют воду для инъекций, жирные масла, этилолеат, а также комплексные растворители.

Вода для инъекций (Aqua pro injectionibus). Санитарные требо­вания к получению, транспортированию и хранению воды для инъекций приведены в приказе МЗ Украины № 139 от 14.06.93 г. «Об утверждении инструкции по санитарно-противоэпидемическому режиму аптек». Она должна отвечать всем требованиями, предъяв­ляемым ФС 42-2620—89 к воде очищенной, и не содержать пироген-ных веществ.

> Пирогенными веществами (от гр. pyr — огонь, лат. generatio — рождение) называют продукты жизнедеятельнос­ти и распада микроорганизмов, токсины, погибшие микроб­ные клетки.

Для определения пирогенности в Украине принят метод, описан­ный в ГФУ (2.6.8. Пирогены), ранее — в ГФ XI («Испытание на пи-рогенность»). Современные мировые фармакопеи, такие, как Британ­ская (1998 г.), Европейская (1997 г.), США (1995 г.), Чешская (1997 г.) наряду с тестом на бактериальные эндотоксины также содержат и «Тест на пирогены». Кроме официального биологического метода ис­пытания на пирогенность, за рубежом широко применяют лимулус-тест (лим-тест), основанный на образовании геля при взаимодействии бактериальных пирогенов с лизатом амебоцитов. В НИИФ России раз­работан аналогичный чувствительный, но более простой метод, осно­ванный на способности грамотрицательных микроорганизмов (основ­ные продуценты пирогенных веществ) образовывать гель в 3 % -ном растворе калия гидроксида.

Химический состав пирогенных веществ очень сложный — это ВМС с большой молекулярной массой, имеют липосахаридную или липопептидную природу. При попадании в организм они вызывают аллергические реакции, повышение температуры, озноб, цианоз, удушье, вплоть до анафилактического шока. При высоком содержа­нии пирогенных веществ в растворах для инъекций может быть даже летальный исход. Токсичность пирогенных веществ объясняется наличием в них фосфатных группировок. Освободиться от пироген-ных веществ в воде и инъекционных растворах термической стери­лизацией практически невозможно, так как это термостабильные вещества. Пирогенные вещества проходят также через фарфоровые бактериальные фильтры. Инъекционные растворы освобождают от пирогенных веществ использованием сорбентов (уголь активирован­ный, целлюлоза и др.).

Вода для инъекций может быть получена перегонкой питьевой воды в асептических условиях в аппаратах, конструкция которых позволяет освобождать водяные пары от мельчайших капель непе-регнанной воды, попавших в пар.

Известно, что пирогенные вещества не летучи и не перегоняются водяным паром. Загрязнение дистиллята пирогенными веществами происходит путем уноса мельчайших капелек воды струей пара в холодильник.

Таким образом, главная задача при получении воды для инъек­ций — это отделение капелек воды от паровой фазы. Для этой цели в настоящее время предложены перегонные аппараты, в которых, в отличие от обычных, водяной пар проходит через специальные сепараторы. По конструкции они бывают центробежные, пленочные, объемные, массо-объемные, комбинированные. В центробежных се­параторах создается вращательное движение сепарируемого пара и под действием ускорений частицы воды интенсивно выделяются из потока пара. Пленочные сепараторы состоят из набора пластинок, через зазоры которых проходит сепарируемый пар. В объемных се­параторах капли воды выпадают из потока пара под действием силы тяжести, в комбинированных — используется комбинация двух или нескольких видов сепарации. В некоторых аппаратах пар проходит длинный извилистый путь, и на этом пути в конденсатор постепенно теряет капельно-жидкую фазу. Очищенный таким образом пар пос­ле конденсации дает воду апирогенную. В настоящее время выпус­каются аппараты АА-1 (рис. 132), А-10, А-25, дистиллятор «Вапо-никс» (США), включающий комбинацию способов: резкое изменение скорости потока пара, его фильтрование через специальный фильтр с диаметром отверстий 40 мкм и отделение капель в центробежном поле и другие.

Аппарат АА-1 выпускается Санкт-Петербургским заводом электромедицин­ского оборудования «ЭМО». Имеет номинальную производительность 1 л/ч. Ос­новные части — камера испарения 10 с уловителями 8, конденсатор 1, сборник-уравнитель 25 и электрощит. Камера испарения 10 снаружи защищена стальным кожухом 9, предназначенным для уменьшения тепловых потерь и предохране­ния обслуживающего персонала от ожогов. В дно 12 камеры испарения вмонти­рованы четыре электронагревателя 11 мощностью по 2 кВт каждый. В камере испарения 10 вода (с добавлением химических реагентов), нагреваемая электро­нагревателями 11, превращается в пар, который через уловители 8 и паровую трубку 7 поступает в конденсационную камеру 3, охлаждаемую снаружи холод­ной водой, и, конденсируясь, превращается в апирогенную воду, которая выте­кает через ниппель 5. Для предотвращения повышения давления в камерах 3 и 10 имеется предохранительная щель 6, через которую может выйти излишек

 
 

пара. На одной из ножек аппарата есть специальный болт 14 с гайками и шай­бами для присоединения провода заземления.

Охлаждающая вода, непрерывно поступая через вентиль 4 в водяную каме­ру 2 конденсатора 1, по сливной трубке 15 сливается в сборник-уравнитель 25. Сборник-уравнитель 25, сообщающийся с камерой испарения 10, предназначен для постоянного поддержания уровня воды в ней.

В начале работы аппарата вода заполняет камеру испарения до установлен­ного уровня. В дальнейшем, по мере выкипания, вода будет поступать в камеру испарения частично, основная же часть через штуцер 26 будет сливаться в кана­лизацию. Для визуального наблюдения за уровнем воды в камере испарения 10 на штуцере сборника-уравнителя 25 имеется водоуказательное стекло 27.

Сборник-уравнитель 25 также предназначен для смешивания воды с хими­ческими реагентами, добавляемыми в камеру испарения для получения каче­ственной апирогенной воды, отвечающей требованиям фармакопеи.

Для этой цели в сборнике-уравнителе имеется специальная трубка, через которую химические реагенты поступают в камеру испарения 10 вместе с во­дой. Строгая дозировка химических реагентов обеспечивается специальным до­зирующим устройством, состоящим из двух стеклянных сосудов 22 с капельни­цами 24, двух фильтров 21 и двух дозаторов 18, соединенных резиновыми трубками. Дозирующее устройство соединено со сборником-уравнителем 25 че­рез капельницы 24. Крепление дозирующего устройства осуществляется на крон­штейне 19, в котором имеются специальные отверстия для стеклянных сосудов 22, закрепляемых при помощи резиновых колец 20 в специальные пазы, в кото­рых свободно вставлены дозаторы 18, которые крепятся на кронштейне 19 контр­гайками 17.

Аппарат А-10 отличается от аппарата АА-1 наличием полуавтоматического управления, отключающего электронагревательные элементы в случае прекра­щения подачи воды.

Аппарат Д-25 отличается от других дистилляторов компактностью и эконо­мичностью. Имеет производительность 25 л/ч. В случае прекращения подачи воды или при малом напоре аппарат автоматически отключается. Работа аппа­рата контролируется сигнальными лампами.

При получении воды для инъекций применяются также аппараты двукрат­ной перегонки. Удобный в эксплуатации и достаточно производительный (5—6 л/ч) бидистиллятор БД-1. Он состоит из дистилляционной камеры, где образуется первичный пар, бидистилляционной камеры для образования вто­ричного пара, конденсатора и сборника. Перед поступлением в бидистилляци-онную камеру происходит смешение дистиллята с химическими реагентами, которые подаются специальным устройством, состоящим из двух стеклянных сосудов с капельницами, фильтрами и дозаторами. В один сосуд заливается раствор двузамещенного фосфата натрия и алюмокалиевых квасцов, в другой — раствор калия перманганата. Процесс получения бидистиллированной воды в этом аппарате сводится к следующему: водопроводная вода поступает в кон­денсатор, затем через уравнитель — в камеру испарения, где нагревается, пре­вращается в пар и направляется в конденсатор. Вода из конденсатора стекает в сборник и после смешения с химическими веществами поступает в бидистил-ляционную камеру, где нагревается, вторично превращается в пар, который поступает в конденсатор и после конденсации стекает в приемник дважды пере­гнанной воды. Наиболее широкое применение в условиях аптек нашел серийно выпускаемый отечественной промышленностью аппарат марки АЭВС-60 (аква-дистиллятор апирогенный электрический с водопоглотителем и сборником). Номинальная производительность аквадистиллятора 60 л/ч. Расчетный расход потребляемой водопроводной воды 900 л/ч.

Аппарат АЭВС-4А — аквадистиллятор электрический с водоподготовкой для получения воды апирогенной (рис. 133).

Состоит из испарителя, сборника воды для инъекций, электрошкафа, про-тивонакипного магнитного устройства (ПМУ), системы трубопроводов. Это ста­ционарная установка, работающая по следующей схеме: образующийся в ис­парителе пар проходит через сепаратор, паропровод и поступает сначала в конденсационную камеру сборника, а затем в его внутреннюю полость, где дис­тиллят окончательно охлаждается до требуемой температуры. На линии подачи водопроводной воды находится ПМУ для освобождения исходной (водопровод­ной) воды от солей и различных примесей, затем вода попадает в охлажденную рубашку сборника и испаритель. По достижении воды в камере испарения до заданного уровня излишки ее сбрасываются в канализацию. После заполнения сборника водой электронагреватель в камере испарения отключается. Произво­дительность аппарата 4 л/ч.

Аппарат АЭВС-25 — аквадистиллятор электрический с водоподготовкой для получения воды апирогенной (рис. 134).

Рис. 133. Аквадистиллятор АЭВС-4А Рис. 134. Аквадистиллятор АЭВС-25

Представляет собой стационарную установку и состоит из: испарителей I и II ступеней, сборника воды для инъекций, трубопроводов и электрошкафа. На линии подачи водопроводной воды в испарители вмонтировано противона-кипное магнитное устройство, предназначенное для предварительной очистки исходной воды. Вначале вода поступает в испаритель II ступени до тех пор, пока плавное устройство не перекроет подачу воды, после чего начнется наполнение водой испарителя I ступени. Одновременно с подачей воды в испарители по

специальному трубопроводу водопро­водная вода подается в охлажденную рубашку сборника. Образовавшийся в испарителе I ступени пар проходит через сепаратор и затем по паропро­воду поступает в нагревательную камеру испарителя II ступени. В на­гревательной камере пар теряет часть своей теплоты на нагревание воды и образование пара в испарителе II сту­пени и частично конденсируется.

Паропроводящая смесь из нагре­вательной камеры и пар, прошедший через сепаратор испарителя II ступе­ни, поступают по трубопроводам в сборник. В сборнике, благодаря его водяной охлаждающей рубашке, про­ходит окончательная конденсация пароводяной смеси и собирается вода для инъекций. После заполнения сборника водой до установленного верхнего уровня поплавок опускает­ся и концевой выключатель оказы­вается в исходном положении.

Аппарат конструкции ЦАНИИ

(рис. 135).

Представляет комбинированную установку из ионообменных колонок и пе­регонного аппарата, в котором водопроводная вода подвергается обессоливанию, а затем перегонке и стерилизации.

Аппарат для получения воды апирогенной портативен, поскольку выполнен в виде вертикально расположенного цилиндра. Составные части аппарата: испа­ритель 2, конденсатор 1, сборник апирогенной воды 4, деминерализационные колонки 3. Устройство для регенерации колонок и электронагреватели располо­жены в камере испарения. Две деминерализационные колонки, установленные сзади аппарата, изготовлены из органического стекла и заполнены ионообмен­ными смолами. В работе участвует одна колонка, а другая (после регенерации) — резервная. Каждая колонка в верхней части заполнена катионитом, а в ниж­ней — анионитом, обе части сообщаются между собой краном. Производитель­ность аппарата 12 л апирогенной воды в час.

В перегонном аппарате производства фирмы «Хирана» водяной пар при пе­регонке освобождается от капелек воды с помощью дефлегматорной насадки (патрубок с поперечными перегородками, не доходящими до конца). В другом аппарате той же фирмы пар из парообразователя направляется в конденсатор через камеру, заполненную отрезками стеклянных трубок, где теряет капельно­жидкую фазу.

В последнее время возрос интерес к разработкам недистилляци-онных методов получения воды особо чистой. Это связано с прогрес­сом в области технологии и техники, требующих применения воды такой степени очистки.

Технологические схемы недистилляционной подготовки получе­ния воды особо чистой включают различные комбинации сорбции активированным углем, ионного обмена, мембранной технологии, ультрафильтрации, обратного осмоса и озонирования.

Так, на предприятиях фирм «Крист А. Г.» и «Хофман Ла-Рош» (Швейца­рия) была разработана и внедрена в производство технологическая схема полу­чения воды особо чистой для фармацевтической промышленности (B. P. Reider, M. Bruch). В качестве исходной использовали городскую водопроводную воду без предварительной очистки. После деионизации вода подается на установку обратного осмоса с использованием фильтровальных элементов из пористых волокон или спиральных элементов. Полученный концентрат с 90 % устранени­ем растворенных веществ подвергается УФ-облучению, микробному обеззара­живанию в ионообменнике смешанного типа (разработка фирмы «Крист А. Г.») до получения воды, отвечающей стандарту. Далее вода фильтруется через сте­рилизующие фильтры с диаметром пор 0,22 мкм. Достижение оптимальных условий функционирования отдельных компонентов установки и повышения длительности срока службы стерилизующих фильтров позволило снизить сто­имость полученной воды на 20 %.

G. C. Ganzi, P. L. Parise предложили комбинированную установку, имеющую модуль обратного осмоса и установку непрерывной деионизации воды. Как по­казали результаты исследований, при такой комбинации получают воду особо чистую без применения химической регенерации и ионообменной обработки. Последние разработки в технологии непрерывной деионизации позволяют выво­дить растворенный углекислый газ без предварительного определения кислот­но-основного показателя. Существующая комплексная система дает возможность получать воду с низким содержанием микроорганизмов и пирогенов.

При подготовке воды особо чистой C. Nebel показал необходимость исполь­зования озона для дезинфекции деионизирующего слоя и самой деионизирован-ной воды. Гранулированный активированный уголь и деионизирующий слой в отдельных случаях способствуют росту микроорганизмов и одно УФ-облучение не может обеспечить полную стерилизацию обрабатываемой воды. Было уста­новлено, что обработка образцов воды озоном до концентрации > 2,5 мгО3/л дает нулевой показатель наличия микроорганизмов в полученной воде. Далее обработанную воду деозонируют УФ-облучением.

K. Margardt было показано, что при разработке компонентов установок для получения воды особо чистой для фармацевтической промышленности, включа­ющие устройства ионообменной обработки и установки обратного осмоса, необ­ходимо включать технологические стадии дезинфекции систем обратного осмо­са с последующим выведением озона и углекислого газа из воды.

Хаяси Акио (Япония) показал возможность получения воды особо чистой, отвечающей требованиям Британской фармакопеи. Обрабатываемая вода (объем 35 л) после прохождения через деионизатор поступала в кварцевый облучатель и обрабатывалась УФ-светом с одновременным пропусканием потока озона в те­чение 20 минут. Испытания показали соответствие воды существующим нормам, возможность выводить из нее при применении этого метода микроорганизмы, пирогены и химические примеси.

Итак, недистилляционные методы дают возможность получать воду особо чистую для фармацевтических производств. Однако при постановке вопроса о получении воды для инъекций ответ не так прост. На западе только XXI фармакопея США позволяет получать воду для инъекций с использованием обратного осмоса с применени­ем специального оборудования. В качестве такового в настоящее время используются: трехстадийная установка «Osmocarb» (Англия) с ав­томатическим регулированием работы, производящая тонкую очис­тку методом обратного осмоса, деминерализатор «Elgamat DUO Rapids» (Англия), обессоливающий воду методом ионного обмена и др. Ультрафиолетовые модули выпускают зарубежные фирмы, такие, как «Asahi Chemical» (Япония), «Hoffmann La-Roche» (Швейцария), «Е^^Великобритания) и др.

Большое значение для качества воды имеют способ ее сбора и хра­нения. Получаемая вода для инъекций собирается в чистые просте-рилизованные или обработанные паром сборники промышленного производства. Необходимые санитарно-гигиенические условия хра­нения воды для инъекций обеспечивают отечественные сборники типа СИ вместимостью 40 и 100 л.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: