Функции

Программы на языке СИ обычно состоят из большого числа отдельных функций (подпрограмм). Как правило, они имеют небольшие размеры и могут находиться как в одном, так и в нескольких файлах.

Связь между функциями осуществляется через аргументы, возвращаемые значения и внешние переменные.

Вызов функции осуществляется следующим образом:

<тип функции >(параметр 1, параметр 2, …);

Если функция имеет переменное число параметров, то вместо последнего из них указывается многоточие.

Передача одного значения из вызванной функции в вызвавшую происходит с помощью оператора возврата, который записывается в следующем виде:

return (выражение);

В этом случае значение выражения (в частном случае может быть просто переменная) передается в основную программу и подставляется вместо обращения к функции.

Пусть вызывающая программа обращается к функции следующим образом:

a=fun(b,c);

Здесь b и c – аргументы, значения которых передаются в вызываемую подпрограмму.

Если описание функции начинается так:

fun(i,j), то переменные i и j получат значения a и b соответственно.

Пример 1. Оформить получение абсолютной величины числа в виде функции. Сама функция может быть оформлена в виде отдельного файла. В этом случае выполняется его включение процедурой #include.

Программа имеет следующий вид:

#include <stdio.h>

main()

{int a=10,b=0,c=-20;

int d,e,f;

d=abs(a); /*обращение к функции abs*/

b=abs(b);

f=abs(c);

printf(“%d %d %d”,d,b,f);

}

#include “abc.c” /*включение файла abc.c с функцией abs*/

/*Функция, вычисляющая абсолютную величину числа */

abs(x)

int x; /*Описание переменных, работающих в функции */

{int y;

y=(x<0)?–x:x; /*Определение абсолютной величины числа*/

return (y); /*Возвращает значение у вызывающей программе*/

}

В приведенной программе описание типа функции было опущено. Это возможно только в том случае, если возвращенное значение имеет целый тип. Во всех остальных случаях описание типа функции обязательно. приведем пример, когда результатом работы функции будет число двойной точности.

Пример 2. Оформить в виде функции вычисление f=√x + y/z.

В первом примере функция хранилась в виде отдельного файла и включалась процедурой #include. Функция может быть включена в один файл с вызывающей программой. В этом случае процедура #include не требуется, а сама функция должна быть объявлена в основной программе, если она имеет не целый тип. Приведем программу для примера 2, оформленную таким способом.

Программа имеет вид:

#include <stdio.h>

main()

{ double f,x=5.5,y=10.1,z=20.5, vv() /*объявлены переменные и функция vv*/

f=vv(x,y,z); /*обращение к функции vv*/

printf(“lf”,f); /*вывод результата */

}

/*функция */

double vv(x,y,z)

double x,y,z; /*объявление переменных функции */

{double f;

f=sqrt(x)+y/z; /*вычисление значения функции */

return(f); /*возврат вычисленного значения функции */

}

В языке СИ аргументы функции передаются по значению, т.е. вызванная функция получает временную копию каждого аргумента, а не его адрес. Это означает, что функция не может изменять оригинальный аргумент в вызвавшей ее программе. Однако это легко сделать, если передавать в функцию не переменные, а их адреса.

Пример 3. В приведенной ниже программе вводятся некоторые значения переменных а и b, потом в функции izm они меняются местами.

#include <stdio.h>

main()

{int a,b;

scanf (“%d %d”, &a, &b);

izm (&a, &b); /*обращение к функции izm; аргументами являются адреса переменных a и b*/

printf(“%d, %d”,a, b); /*вывод на экран измененных значений */

}

#include “izm.c” /*включение файла izm.c с функцией izm */

/*функция*/

izm(a, d); /*аргументы a и b являются указателями */

int *a, *b; /* *a и *b – значения, на которые указывают указатели */

{int c;

c=*a;

*a = *b;

*b=c; /*обмен местами */

}

Функция izm получает копию адресов переменных a и b, меняет местами значения, записанные по этим адресам, и передает управление в основную программу. Адреса &a и &b в основной программе не изменялись, а вот значения, на которые они указывают, поменялись местами.

Если в качестве аргумента функции используется имя массива, то ей передается адрес начала массива, а сами элементы не копируются. Функция может изменять элементы массива, сдвигаясь (индексированием) от его начала.

Пример 4. В массиве S поменять местами элементы: первый со вторым, третий с четвертым и т.д. Оформить этот алгоритм в виде функции reverse.

#include <stdio.h>

main()

{int i,j,s[6]; /* описание переменных i,j и массива s целого типа */

for (i=0; i<6; i++)

scanf(“%d”,&s[i]); /*ввод элементов массива s*/

reverse(s); /*обращение к функции reverse*/

for (i=0; i<6; i++)

printf(“%d”,s[i]); /*вывод полученного массива */

}

include “reverse.c” /*включение файла reverse.c с функцией reverse */

/*функция*/

reverse(s)

int s[]; /*описание работающего в подпрограмме массива */

{

int a,i;

for (i=1; i<5; i+=2)

{a=s[i]; s[i]=s[i+1]; s[i+1]=a;} /*обмен элементов местами*/

}

Рассмотрим особенности работы функции с двумерным массивом. В предыдущем примере в функции массив был описан как int s[]; для двумерного массива а нельзя записать a[][]. В описании двумерного массива во второй квадратной скобке должно быть указано количество столбцов, например: a[][3].

Пример 5. Увеличить все элементы массива а(5,5) в два раза. Оформить этот алгоритм в виде подпрограммы.

#include <stdio.h>

main()

{int a[5][5]; /*описание массива a*/

int i,j; /*объявление переменных i,j*/

for (i=0;i<5;i++)

for (j=0; j<5; j++)

scanf(“%d”,a[i][j]); /*ввод массива*/

mas(a); /*обращение к функции mas*/

for (i=0; i<5; i++)

for (j=0; j<5; j++)

printf(“%d”, a[i][j]); /*вывод полученного результата*/

}

/*функция*/

mas(a)

int a[][5]; /*описание массива а*/

{int i,j; /*описание переменных i,j*/

for (i=0; i<5; i++)

for (j=0; j<5; j++)

a[i][j] = 2*a[i][j]; /*увеличение элементов массива в 2 раза*/

}

  1. Классы памяти

В языке СИ различают четыре основных памяти: внешнюю (глобальную), автоматическую (локальную), статическую и регистровую.

Внешние переменные определены вне любой из функций, следовательно, доступны для многих из них. Область внешней переменной простирается от точки во входном файле, где она объявлена, и до конца файла. Если внешняя переменная определена в другом файле, то вступает в силу описание extern (внешний). На рисунке 1 показано, где объявляются и на что распространяется область действия внешних переменных, если программа main и вызываемая функция находятся в данном файле. На рисунке 2 демонстрируются отличия, имеющие место, когда main и вызываемая функция находятся в разных файлах. В файле с вызыва-

емой функцией внешние переменные будут доступны после их описания с помощью ключевого слова extern.

 
Пример 5. Оформить в виде функции вычисление выражения:

f=a×x2+b×x+c;

В приведенной ниже программе заданные переменные объявлены как внешние, причем основная программа и функция находятся в одном файле.

#include <stdio.h>

int a=5, b=7, c=10,x; /* Объявление внешних переменных a,b,c,x целого типа*/

main ()

{ int f;

scanf (“%d”, &x); /*Ввод значения переменной x*/

f=kv(); /*обращение к функции*/

printf (“%d”,f); /*вывод на экран значения переменной f*/

}

/*функция*/

kv()

{int f;

f=a*x*x+b*x+c; /*вычисление значения f*/

return (f); /*возвращает значение f вызывающей программе*/

}

Если сравнить эту программу с программой, приведенной в примере 2, то можно обнаружить два различия:

1) после имени функции в скобках отсутствуют аргументы;

2)

 
 

в функции не объявлены переменные, с которыми работает функция.

Рисунок 1- Область действия внешних переменных

Это стало возможным потому, что переменные объявлены внешними, а значит они известны всему файлу, в том числе и функции.

Внешние переменные должны быть описаны до функции main(). Только в этом случае они становятся внешними.

Приведем программу для этого же примера, рассмотрев случай, когда основная программа и функция расположены в разных файлах.

#include <stdio.h>

int a=5, b=7, c=10,x,f; /* Объявление внешних переменных a,b,c,x,f целого типа*/

main ()

{

scanf (“%d”, &x); /*Ввод значения переменной x*/

f=kv(); /*обращение к функции*/

printf (“%d”,f); /*вывод на экран значения переменной f*/

}

#include “kv.c” /*включение файла kv.c функцией kv*/

/*функция*/

kv()

{extern int a,b,c,x,f;

f=a*x*x+b*x+c; /*вычисление значения f*/

return (f); /*возвращает значение f вызывающей программе*/

}

Как было сказано выше, если основная программа и функция расположены в разных файлах, то переменные в функции должны быть вписаны при помощи ключевого слова extern.

 
 

Рассмотрим теперь статические переменные. Статические переменные имеют такую же область действия, как автоматические, но они не исчезают, когда содержащая их функция закончит свою работу. Компилятор хранит их значения от одного вызова функции до другого. Статические переменные объявляются с помощью ключевого слова static. Можно статические переменные описать вне любой функции. Это создает внешнюю статическую переменную. Разница между внешней переменной и внешней статической переменной заключается в области их действия. Обычная внешняя переменная может использоваться функциями в любом файле (с помощью ключевого слова extern), в то время как внешняя статическая переменная может использоваться только функциями того же самого файла.

Регистровые переменные относятся к последнему классу. Ключевое слово register указывает, что переменная, о которой идет речь, будет интенсивно использоваться. Если это возможно, значения таких переменных помещаются во внутренние регистры процессора, благодаря чему программа будет более быстрой.

Тема 6: Структуры.

Структура – это объединение одного либо более объектов(переменных, массивов, указателей, других структур). Как и массив, она представляет собой совокупность данных, но отличается от него тем, что к ее элементам необходимо обращаться по имени, и ее различные элементы не обязательно должны принадлежать одному типу.

Структуры удобно использовать там, где разнообразные данные, относящиеся к одному и тому же объекту, необходимо объединять. Например, ученика средней школы характеризуют следующие данные: фамилия, имя, дата рождения, класс, возраст.

Объявление структуры осуществляется с помощью ключевого слова struct, за которым следует ее тип, список элементов, заключенных в фигурные скобки. Ее можно представить в следующем общем виде:

struct тип {тип элемента 1 имя элемента 1;

тип элемента n имя элемента n; };

Именем элемента может быть любой идентификатор. В одной строке можно записывать через запятую несколько идентификаторов одного типа.

Например:

struct date { int day;

int month;

int year;};

Русские буквы использовать в идентификаторе в языке СИ нельзя.

Следом за фигурной скобкой, заканчивающей список элементов, могут записываться переменные данного типа, например:

struct date {…} a, b, c;

При этом выделяется соответствующая память.

Выведенное имя типа можно использовать для объявления записи, например: struct date day;. Теперь переменная day имеет тип date.

Разрешается вкладывать структуры одна на другую. Для лучшего восприятия структуры используем русские буквы в идентификаторах, в языке СИ этого делать нельзя.

Например:

struct УЧЕНИК { char Фамилия [15];

имя [15];

struct DATA ДАТА РОЖДЕНИЯ;

int класс, возраст;};

определенный выше тип DATA включает три элемента: День, Месяц, Год, содержащие целые значения (int). Запись УЧЕНИК включает элементы: ФАМИЛИЯ [15]; ИМЯ[15]; ДАТА РОЖДЕНИЯ, КЛАСС, ВОЗРАСТ. ФАМИЛИЯ [15] и ИМЯ [15] – это символьные массивы из 15 компонент каждый. Переменная ДАТА РОЖДЕНИЯ представлена составным элементом (вложенной структурой) ДАТА. Каждой дате рождения соответствуют день месяца, месяц и год. Элементы КЛАСС и ВОЗРАСТ содержат значения целого типа (int). После введения типов ДАТА и УЧЕНИК можно объявить переменные, значения которых принадлежат этим типам.

Например:

struct УЧЕНИК УЧЕНИКИ [50];

массив УЧЕНИКИ состоит из 50 элементов типа УЧЕНИК.

В языке СИ разрешено использовать массивы структуры; записи могут состоять из массивов и других записей.

Чтобы обратиться к отдельному компоненту структуры, необходимо указать ее имя, поставить точку и сразу за ней написать имя нужного элемента.

Например:

Ученики [1]. КЛАСС = 3;

Ученики [1]. ДАТА РОЖДЕНИЯ. ДЕНЬ=5;

Ученики [1]. ДАТА РОЖДЕНИЯ. МЕСЯЦ=4;

Ученики [1]. ДАТА РОЖДЕНИЯ. ГОД=1979;

Первая строка указывает, что 1-й ученик учится в третьем классе, а последующие строки – его дату рождения: 5.04.79.

Каждый тип элемента структуры определяется соответствующей строкой объявления в фигурных скобках. Например, массив УЧЕНИКИ имеет тип УЧЕНИК, год является целым числом. Так как каждый элемент записи относится к определенному типу, его составное имя может появляться везде, где разрешено использовать значение этого типа. Рассмотрим пример программы:

/* Демонстрация записи */

#include < stdio.h >

struct computer { int mem;

int sp;

char model [20]; };

/* Объявление записи типа computer, состоящей из трех элементов: mem, sp, model */

struct computer pibm =

{512, 1, “ПЭВМ ЕС 1840.05”}

/* Объявление и инициализация переменной pibm типа computer */

main ()

{ printf (“ персональная ЭВМ % s\n\n “, pibm.model);

printf (“объем оперативной памяти - % d К байт \n”, pibm.mem);

printf (“производительность - % d млн. операций в секунду \n”, pibm.sp);

/* вывод на экран значений элементов структуры */

}

В данной программе объявляется запись computer, которая состоит из трех элементов: mem (память ЭВМ), sp (быстродействие), model [20] (модель ПЭВМ). Переменная pibm имеет тип computer и является глобальной. Строки pibm.model, pibm.mem, pibm. sp в операторе printf вызывают обращение к соответствующим элементам записи pibm типа computer, которым ранее были присвоены определенные значения.

Результат работы программы имеет вид:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: