Генотерапия

Лечение заболеваний с помощью генов получило название генотерапии. Сейчас в мире насчитывается порядка 400 проектов, посвященных лечению с помощью генотеропии.

Разработке программы генной терапии предшествуют тщательный анализ тканеспецифической экспрессии соответствующего гена, идентификация первичного биохимического дефекта, исследование структуры, функции и внутриклеточного распределения его белкового продукта, а также биохимический анализ патологического процесса. Все эти данные учитываются при составлении соответствующего медицинского протокола.

Апробацию процедуры генокоррекции наследственного заболевания проводят на первичных культурах клеток больного, в которых в норме функционально активен данный ген. На этих клеточных моделях оценивают эффективность выбранной системы переноса экзогенной ДНК, определяют экспрессию вводимой генетической конструкции, анализируют ее взаимодействие с геномом клетки, отрабатывают способы коррекции на биохимическом уровне. Используя культуры клеток, можно разработать систему адресной доставки рекомбинантных ДНК, однако проверка надежности работы этой системы может быть осуществлена только на уровне целого организма. Поэтому такое внимание в программах по генной терапии уделяется экспериментам in vivo на естественных или искусственно полученных моделях соответствующих наследственных болезней у животных.

Успешная коррекция генетических дефектов у таких животных и отсутствие нежелательных побочных эффектов генной терапии являются важнейшей предпосылкой для разрешения клинических испытаний. Таким образом, стандартная схема генокоррекции наследственного дефекта включает серию последовательных этапов. Она начинается созданием полноценно работающей (экспрессирующейся) генетической конструкции, содержащей смысловую (кодирующую белок) и регуляторную части гена. На следующем этапе решается проблема вектора, обеспечивающего эффективную, а по возможности и адресную доставку гена в клетки-мишени. Затем проводится трансфекция (перенос полученной конструкции) в клетки-мишени, оценивается эффективность трансфекции, степень коррегируемости первичного биохимического дефекта в условиях клеточных культур (in vitro) и, что особенно важно, in vivo на животных - биологических моделях. Только после этого можно приступать к программе клинических испытаний.

Существует два типа генотерапии: заместительная и корректирующая.

Заместительная генотерапия заключается во вводе в клетку неповрежденного гена. Внесенная копия заменит по функциям сохранившийся в геноме больного дефектный ген. Все проводимые сегодня клинические испытания используют внесение в клетку дополнительных количеств ДНК.

При корректирующей терапии предполагается замена дефектного гена нормальным в результате рекомбинации. Пока этот метод на стадии лабораторных испытаний, так как эффективность его еще очень низка, но последние исследования показывают успехи в лечении некоторых заболеваний.

Амавроз Лебера - врожденная слепота, редкая форма наследственного заболевания, которое проявляется уже в младенчестве. Из-за дефектного гена (Retinal Pigment Epithelium, 65 kDa) в сетчатке умирают и не восстанавливаются светочувствительные клетки. По статистике, от амавроза Лебера страдает один человек на 81 тысячу. Болезнь сопровождается ослаблением или полной потерей зрения без анатомического нарушения структуры органов. Повреждение гена RPE65 приводит к прекращению синтеза определенных ферментов, участвующих в выработке светочувствительного пигмента, и дегенерации фоторецепторов. Врожденный амавроз Лебера впервые был описан в 1869 году немецким ученым-офтальмологом Теодором Лебером, однако этиология и патогенез этой группы болезней до настоящего времени остаются не до конца изученными.
Клиническими критериями диагностики ВАЛ являются: значительное снижение остроты зрения (от отсутствия реакции на свет и светоощущения до сотых долей), у большинства детей отмечаются плавающие движения глаз, нистагм, окуло-пальцевой симптом, косоглазие, могут встречаться деструкция стекловидного тела и частичное врожденное помутнение хрусталиков. Характерным является резкое снижение скотопических и фотопических показателей суммарного потенциала фоторецепторов сетчатки на электроретинографии (ЭРГ), вплоть до ее отсутствия, при нормальной офтальмоскопической картине глазного дна. Кроме того, отмечаются нарушения цветоощущения от красно-зеленой дисхроматопсии до ахроматопсии, сужение полей зрения до 30-10 градусов, значительное повышение порога электрической чувствительности.
Традиционная лекарственная терапия бессильна в борьбе с этим заболеванием. На помощь пришла генотерапия. Исследователи из США и Англии делали инъекцию вирусного вектора, содержащего исправленный ген в один глаз пациентов, страдающих амаврозом Лебеля. Вектор содержал фермент, необходимый для продукции светочувствительного пигмента и вводился в эпителий пигментного слоя сетчатки. В первом исследовании у всех 12 пациентов светочувствительность в "пролеченном" глазу вернулась. У 4 детей зрение восстановилось до такой степени, что они могли заниматься спортом и нормально учиться в школе. Кроме того, были проведены исследования на саймири (беличтьи обезьянки), страдающих дальтонизмом. Инъекция "исправленных" генов вернула им полное цветовое зрение.

В зависимости от способа введения экзогенных ДНК в геном пациента генная терапия может проводиться либо в культуре клеток (ex vivo), либо непосредственно в организме (in vivo). Клеточная генная терапия или терапия ex vivo предполагает выделение и культивирование специфических типов клеток пациента, введение в них чужеродных генов, отбор трансфецированных клеток и реинфузию их тому же пациенту.

Примером может служить лечение комбинированного иммунодефииицита. Комбинированный иммунодефицит может быть результатом дефекта гена аденозиндезаминазы. Это заболевание клинически и иммунологически характеризуется дефектом как Т-, так и В-лимфоцитов. Диагностируется заболевание обычно в раннем возрасте, а признаками служат тяжелые, потенциально смертельные инфекции, глубокое нарушение клеточного иммунитета и дефицит антител, лимфопения, в основном за счет Т-лимфоцитов. Клинические проявления обычно включают задержку и отсутствие прогресса физического и моторного развития, персистирующие, вяло текущие и необычно упорные инфекции, вызванные низковирулентными оппортунистическими микроорганизмами (например, Candida, Pneumocystis carinii, cytomegalovirus). Тяжелые комбинированные первичные иммунодефициты классифицируется далее в зависимости от патогенеза, когда он известен (например, дефекта фермента), типа наследования и уровня нарушения дифференцировки.

Одной из форм комбинированного иммунодефицита является тяжелая комбинированная иммунная недостаточность ТКИН, или англоязычное (severe combined immunodeficiency - SCID или "bubble boy" diseace). Обнаружены как Х-сцепленная, так и аутосомно- рецессивная формы SCID. В случаях SCID с нормальным количеством В-лимфоцитов обычно наблюдается Х-сцепленное наследование. Впервые попытка лечения такого больного методами генотерапии была предпринята в США в 1990 г. У больного ребенка извлекли Т-лимфоциты, трансформировали ретровирусным вектором, введя нормальный ген аденозиндезаминазы и вернули клетки в организм. Введение приходилось повторять. Более эффективна аналогичная трансформация стволовых клеток костного мозга.

В январе 2009 года итальянские ученые опубликовали данные о полном излечении 8-ми летнего мальчика, страдающего этим заболеванием. Кроме того, 8 из 10 участвовавших в клиническом испытании не нуждаются более в ферментозаместительной терапии и живут теперь нормальной жизнью. Никаких серьезных побочных эффектов от применения генотерапии обнаружено не было.

Х-сцепленная адренолейко дистрофия (АДЛ) - дегенеративное заболевание белого вещества головного мозга. Поражает мальчиков с частотой примерно 1/17 000. Оно убивает их еще до того, как наступит подростковый возраст. Заболевание обусловлено дефектом обмена жирных кислот. В результате нарушается миелинизация нервных клеток. Клиническая картина выражается в интеллектуальной, поведенческой недостаточности, расстройстве памяти, нарушении походки, расстройстве зрения вплоть до атрофии зрительных нервов.

В экспериментах французских исследователей скорректированный ген вставляли в клетки крови 7-летнего мальчика, страдающего АДЛ, некоторые клетки начинали продуцировать необходимый для обмена жирных кислот протеин, а также, по видимому, мигрировали в мозг. По крайней мере, спустя 2 года прогрессирующее повреждение мозга, характерное для этой болезни, прекратилось. В этих экспериментах гены доставлялись в клетки с помощью инактивированного вируса иммунодефицита человека (HIV).
Компания Genetix Pharmaceuticals, специализирующаяся на соматической генной терапии, также сообщила в ноябре 2009 года о создании препарата для лечения АДЛ на основе собственных гемопоэтических стволовых клеток костного мозга, «зараженных» модифицированным вирусом ВИЧ (лентивирусный вектор), несущим в себе ген, которого недостает в организме больного АДЛ. Такой препарат уже ввели двум юным пациентам (после миелоаблации), спустя 15 месяцев прогрессирование болезни прекратилось.

Генная терапия in vivo основана на прямом введении клонированных и определенным образом упакованных последовательностей ДНК в специфические ткани больного. В настоящее время не существует общедоступного метода культивирования клеток легких, поэтому при легочных заболеваниях единственный способ доставить чужеродный ген - это ввести его прямо в организм.

Муковисцидоз - весьма распространенное среди людей белой расы тяжелое наследственное заболевание легких, которое поражает, например, в семьях из Центральной Европы одного новорожденного из 2500 и для которого установлен дефектный ген, кодирующий белок-регулятор трансмембранной проводимости. Основное проявление дефектного гена – пневмония. Поражаются все эпителиальные клетки. Основная проблема – как доставить ген в клетки, покрытые слизью, которая препятствует трансформации. Неповрежденную копию "гена заболевания", включенную в аденовирусный вектор или липосому, вводят в форме аэрозоля в дыхательные пути больного.

Для коррекции нарушения при прогрессирующей мышечной дистрофии Дюшенна (заболевании мальчиков, связанном с дефектами Х-хромосомы) нормальный ген, кодирующий белок дистрофии, пытались прямо вкалывать в мышечные волокна, используя либо "голую" ДНК, либо аденовирусный вектор. Другие исследователи трансплантировали больному миобласты после генетической коррекции. Ранее неподвижный ребенок приобретал способность двигаться! К сожалению, во всех этих опытах удается получить только временный терапевтический эффект, и процедура введения гена должна неоднократно повторяться.

Список наследственных заболеваний, которые пытаются или планируют лечить генами, велик. Это и ревматоидный артрит, и фенилкетонурия, и заболевания, связанные с недостатком гормонов (инсулина, эритропоэтина, гормона роста). В случае хронической анемии, связанной с дефицитом эритропоэтина, на основании опытов на животных предлагается принципиально новый подход к лечению. Так как каждая из наших клеток содержит один и тот же геном, можно заставить фибробласты кожи, которые в норме не производят эритропоэтина, синтезировать этот гормон. Для этого нужно ввести в геном новую контролирующую область и тем самым снять запрет со считывания (экспрессии) гена эритропоэтина, присутствующего, но "молчащего" в фибробластах.

Практически в любой области медицины либо начаты клинические испытания лечения наследственных заболеваний с помощью генотерапии, либо в опытах на животных разрабатываются подходы к такому лечению. По мере усовершенствования методов доставки генов и контроля их экспрессии список заболеваний, к которым можно применять генотерапию, будет безусловно расширяться.

Генотерапия применима не только к наследственным заболеваниям. Предстоит решить проблему лечения генами "чумы XX века" — синдрома приобретенного иммунодефицита (СПИД), возникающего при заражении вирусом иммунодефицита человека (ВИЧ). ВИЧ представляет собой ретровирус, поражающий Т-лимфоциты и макрофаги. Болезнь удалось бы победить, если бы были найдены новые гены, введение которых в зараженные ВИЧ лимфоциты останавливало бы дальнейшее размножение вируса. Предложено множество хитроумных способов борьбы со СПИДом с помощью привнесенных генов. Все они основаны на новейших данных о строении и функционировании генома ретровируса. Например, вводя прямо в мышцы больного ретровирусные векторы, несущие отдельные гены ВИЧ, ученые рассчитывали на то, что гены ВИЧ после внедрения в ДНК хромосом хозяина смогут дать информацию для синтеза вирусных белков и произойдет "противоСПИДная" иммунизация больного этими белками. Однако еще не получено ощутимых результатов, которые сулили бы успех в борьбе с вирусом дикого типа, коварство которого заключается в его изменчивости.

Огромные перспективы открывает использование генотерапии для лечения онкологических заболеваний. Многолетние усилия ученых привели к пониманию того, что рак — это генетическое заболевание и его развитие происходит многостадийно, в результате серии генетических нарушений, накапливающихся в клетке. Следовательно, каждый из таких отдельных генетических эффектов может стать точкой приложения генотерапевтического подхода.

В настоящее время в мире около 400 проектов по генной терапии находятся на различных стадиях клинических испытаний: 261 из них проходит первую стадию (оценка токсичности), 133 - вторую (испытание на небольшой группе тяжелобольных пациентов) и только 3 проекта (два по лечению рака мозга и один по гемофилии) - на заключительной третьей стадии (масштабные клинические испытания). Пока генная терапия применяется в основном в онкологии (более 60% проектов). Примерно по 15% приходится на генную терапию инфекционных (СПИД, гепатит В, туберкулез) и моно генных заболеваний (муковисцидоз, семейная гиперхолестеринемия, мукополисахаридозы, гемофилия А и др.).

Методы генной терапии позволяют лечить различные генетические патологии в период внутриутробного развития.

Генная терапия успешно применяется для лечения не только наследственных, но и значительно более распространенных мультифакториальных болезней (диабет, остеопороз, ревматоидный артрит, различные опухоли). Для лечения таких заболеваний применяется не одна, а сразу много генетических конструкций, исправляющих дефекты различных стадий течения патологического процесса

Трансформация — изменение наследственных свойств клетки, вызванное поглощенной ДНК.

Оперон — функциональная единица генома у прокариот, в состав которой входят цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами. Такая функциональная организация позволяет эффективнее регулировать экспрессию (транскрипцию) этих генов.

Концепцию оперона для прокариот предложили в 1961 году французские ученые Жакоб и Моно, за что получили Нобелевскую премию в 1965 году.

Опероны по количеству цистронов делят на моно-, олиго- и полицистронные, содержащие, соответственно, только один, несколько или много цистронов (генов).

Характерным примером оперонной организации генома прокариот является лактозный оперон.

Начинается и заканчивается оперон регуляторными областями — промотором в начале и терминатором в конце, кроме этого, каждый отдельный цистрон может иметь в своей структуре собственный промотор и/или терминатор.

Лактозный оперон (lac оперон) — полицистронный оперон бактерий, кодирующий гены метаболизма лактозы

Промотор — последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как стартовая площадка для начала специфической или осмысленной транскрипции. У прокариот промотор включает ряд мотивов, важных для узнавания его РНК-полимеразой, в частности так называемые последовательности -10 и -35. Промотор асимметричен, что позволяет РНК-полимеразе начать транскрипцию в правильном направлении и указывает то, какая из двух цепей ДНК будет служить матрицей для синтеза РНК.

Промоторный участок в пределах оперона может частично перекрываться или вовсе не перекрываться с операторным участком цистрона (гена).

То, под каким промотором находится кодирующий РНК участок ДНК, играет решающее значение в интенсивности экспрессии этого гена в каждом конкретном типе клеток. Активация промотора определяется присутствием в каждом типе клеток своего набора транскрипционных факторов

Оператор — это последовательность нуклеотидов ДНК, с которой связывается регуляторный белок — репрессор или активатор.[1] Впервые оператор был описан в составе лактозного оперона E. coli как участок, перекрывающийся с промотором находящийся перед генами в составе оперона.

Терминатор — последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как сигнал к прекращению синтеза молекулы РНК и диссоциации транскрипционного комплекса.

Часто эти последовательности заканчиваются цепочкой тиминовых нуклеотидов (у транскриптов — уридиновых), которой предшествует участок, содержащий внутренние, взаимно комплементарные последовательности в противоположных ориентациях («шпилечные» структуры). Область «шпильки» обогащена GC парами, придающими этой структуре большую устойчивость[

У бактерий есть два типа терминаторов:

  1. ρ-независимые терминаторы, у которых формирование стебля-петли (вторичная структура РНК) внутри синтезируемой РНК разрушает комплекс РНК — ДНК — РНК-полимераза.
  2. ρ-зависимые терминаторы, которые для прекращения синтеза РНК требуют действия фактора специфичности ρ, комплекса белков с хеликазной активностью.

Коферменты – органические природные соединения небелковой природы, необходимые для осуществления каталитического действия ферментов. Выполняют функцию переносчиков электронов, атомов или функциональных групп с одного субстрата на другой.

Штамм (от нем. Stammen, буквально — происходить) — чистая культура вирусов, бактерий, других микроорганизмов или культура клеток, изолированная в определённое время и в определенном месте.

Серотип — группа микроорганизмов одного вида, объединяемых общей антигенной структурой

Килобаза - единица изменения длины молекулы ДНК, равная тысяче пар оснований.

Линкеры - химически синтезированные олигонуклеотиды, представляющие собой сайты рестрикции или их комбинацию.

Репликон — молекула ДНК или её участок, находящиеся под контролем репликатора.

Репликатор – участок ДНК, ответственный за инициацию репликации.

Эписомы — генетические элементы бактерий, способные существовать как в интегрированном в бактериальные хромосомы состоянии, так и в виде автономных плазмид

Плазмиды — дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы ДНК.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: