Теоремы Паппа-Гульдина

Впервые эти теоремы нашел александрийский математик Папп в 3 веке н.э.

В эпоху средневековья многие достижения античной науки были в Европе утрачены. В 17-ом веке теоремы вновь открыл швейцарский математик Гульдин.

Первая теорема Паппа-Гульдина. Площадь поверхности, образованной вращением кривой вокруг не пересекающей её оси, равна произведению длины кривой на путь, проходимый центром тяжести этой кривой.

В случае вращения вокруг оси теорема записывается формулой

.

Доказательство. Рассмотрим случай плоской кривой, когда она задана явно уравнением . Ордината центра тяжести кривой находится по формуле . Подставив сюда формулу для нахождения статического момента и умножив это равенство на длину кривой , получаем

.

Затем домножим обе части этого равенства на :

.

В правой части этого равенства стоит площадь поверхности тела, образованного вращением кривой вокруг оси .

В левой части равенства стоит произведение длины кривой на длину окружности , которую описывает центр тяжести. Теорема доказана.

Пример 1. Найти координаты центра тяжести полуокружности радиуса с центром в начале координат, расположенной в верхней полуплоскости.

В силу симметрии абсцисса центра тяжести . Найдем ординату центра тяжести, используя первую теорему Паппа-Гульдина. Поверхность, образованная при вращении кривой вокруг оси , является сферой, ее площадь . Длина кривой равна половине длины окружности . Подставив эти значения в формулу , найдем ординату центра тяжести .

Пример 2. Найти площадь поверхности вращения полуокружности вокруг касательной, параллельной её диаметру.

Используем результат, полученный в предыдущем примере. Ордината центра тяжести полуокружности .

Тогда радиус окружности, описываемой центром тяжести при вращении полуокружности вокруг касательной, равен . Из первой теоремы Паппа-Гульдина имеем формулу . Отсюда искомая площадь поверхности

.

Вторая теорема Паппа-Гульдина. Объём тела, образованного вращением плоской фигуры вокруг не пересекающей её оси, равен произведению площади фигуры на путь, проходимый центром тяжести этой фигуры. В случае вращения вокруг оси теорема записывается формулой

.

Доказательство. Рассмотрим случай плоской кривой, когда она задана явно уравнением . Фигура под графиком этой кривой является криволинейной трапецией. Ордината центра тяжести плоской фигуры находится по формуле . Применяя формулу для вычисления статического момента , получаем . Домножим на число обе части этого равенства:

.

В правой части стоит объем тела, полученного вращением кривой вокруг оси . Левая часть является произведением площади фигуры на длину окружности, описываемой центром тяжести этой фигуры.

Теорема доказана.

Пример 3. Найти координаты центра тяжести полукруга радиуса R с центром в начале координат, расположенного в верхней полуплоскости.

Воспользуемся второй теоремой Паппа-Гульдина. При вращении вокруг оси полукруг образует шар. Объем шара равен , площадь полукруга равна . Подставляя эти значения в формулу , находим .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: