Двухконтурный турбореактивный двигатель

Конспект лекций

Тема: ОСНОВНЫЕ СВЕДЕНИЯ О ДВИГАТЕЛЕ Д - 18Т
 
 
Цель:Ознакомить с особенностями конструкции и работы двигателя Д-18Т
Категория:сотрудники служб производственного блока

Содержание

ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ

ДВИГАТЕЛЬ Д-18Т - ОПИСАНИЕ И РАБОТА

ОЩИЕ СВЕДЕНИЯ.. 5

КРАТКОЕ ОПИСАНИЕ.. 6

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ДВИГАТЕЛЕЙ Д-18Т СЕРИИ 3. 16

ОСНОВНЫЕ ДАННЫЕ.. 17

РАБОТА..

СУЩНОСТЬ ПОМПАЖА ДВИГАТЕЛЯ И ПРИЧИНЫ ЕГО ВОЗНИКНОВЕНИЯ

Меры по редупреждению помпажа на двигателе Д-18Т

Графический материал.. 25

Контрольные вопросы... Ошибка! Закладка не определена.

Список использованной литературы... 30


ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ

Схема ТРДД с малой степенью двухконтурности.
1 - Вентилятор.
2 - Компрессор низкого давления.
3 - Компрессор высокого давления.
4 - Камера сгорания.
5 - Турбина высокого давления.
6 - Турбина низкого давления.
7 - Сопло.
8 - Вал ротора высокого давления.
9 - Вал ротора низкого давления.

В основу двухконтурных ТРД (далее - ТРДД), в англоязычной литературе - Turbofan, положен принцип присоединения к ТРД дополнительной массы воздуха, проходящей через внешний контур двигателя, позволяющий получать двигатели с более высоким полетным КПД, по сравнению с обычными ТРД.
Пройдя в через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на 2 потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора.
Одним из важнейших параметров ТРДД, является степень двухконтурности, то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур.
m = G 2 / G 1
Где G 1 и G 2 расход воздуха через внутренний и внешний контуры соответственно.

Если вернуться к формулам (1) и (4) то принцип присоединения массы можно истолковать следующим образом. В ТРДД, согласно формуле (4) заложен принцип повышения полетного КПД двигателя, за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла и скоростью полета. Уменьшение тяги, которое, согласно формуле (1), вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Следствием увеличения расхода воздуха через двигатель является увеличение площади фронтального сечения входного устройства двигателя, следствием чего является увеличение диаметра входа в двигатель, что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности - тем большего диаметра будет двигатель при прочих равных условиях.

Первым, предложившим концепцию ТРДД в отечественном авиадвигателестроении был Люлька А. М.

ТРДД АИ-25 используемый на пассажирском самолете Як-40

Все ТРДД можно разбить на 2 группы: со смешением потоков за турбиной и без смешения.

В ТРДД со смешением потоков (ТРДДсм) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя.

Например, длина ТРДД АИ-25, устанавливаемого на самолете Як-40 - 2140 мм., а ТРДДсм АИ-25ТЛ, устанавливаемого на самолете L-39 - 3358 мм.

ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолетов.

Турбовентиляторным двигателем в популярной литературе обычно называют ТРДД с высокой степенью двухконтурности (выше 2).

Степень двухконтурности — параметр турбореактивного двухконтурного двигателя, показывающий отношение расхода воздуха через внешний контур двигателя к расходу воздуха через внутренний контур. Чем больше величина этого параметра, тем больший КПД двигателя удаётся получить.

В данном типе двигателей используется одноступенчатый вентилятор большого диаметра, обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлете. По причине большого диаметра вентилятора сопло внешнего контура таких ТРДД становится достаточно тяжелым и его часто выполняют укороченным со спрямляющими аппаратами (неподвижными лопатками, поворачивающими воздушный поток в осевое направление). Соответственно, большинство ТРДД с высокой степенью двухконтурности - без смешения потоков.

Устройство внутреннего контура таких двигателей подобно устройству ТРД, последние ступени турбины которого являются приводом вентилятора.

Вентилятор двигателя ПС-90А. Вид спереди.

Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом. По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе не высока - сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине, достаточно часто, сопло внешнего контура ошибочно принимают за обтекатель вентилятора.

ТРДД с высокой степенью двухконтурности имеют двух- или трехвальную конструкцию.

Главным достоинством таких двигателей является высокая их экономичность.

Недостатки - высокие масса и габариты. Особенно - большой диаметр вентилятора, который приводит к значительному лобовому сопротивлению воздуха в полете.

Область применения таких двигателей - дальне- и среднемагистральные коммерческие авиалайнеры, военно-транспортная авиация.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: