double arrow

Количество информации. Формула Шеннона. Примеры её применения


Ответ:

Количество информации – в теории информации это количество информации в одном случайном объекте относительно другого.

Существует множество ситуаций, когда возможные события имеют различные вероятности реализации. Например, если монета несимметрична (одна сторона тяжелее другой), то при ее бросании вероятности выпадения "орла" и "решки" будут различаться.

Формулу для вычисления количества информации в случае различных вероятностей событий предложил К. Шеннон в 1948 году. В этом случае количество информации определяется по формуле:

(2.2)


где I - количество информации;
N - количество возможных событий;
рi - вероятность i-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

Р1 = 1/2, р2 = 1/4, р3 = 1/8, р4 = 1/8.

Тогда количество информации, которое мы получим после реализации одного из них, можно рассчитать по формуле (2.2):

I = -(l/2 log2l/2 + l/4 log2l/4 + l/8 log2l/8 + l/8 log2l/8) = (1/2 + 2/4 + 3/8 + 3/8) битов = 14/8 битов = 1,75 бита.

Для частного, но широко распространенного и рассмотренного выше случая, когда события равновероятны (pi= 1/N), величину количества информации I можно рассчитать по формуле:

(2.3)

По формуле (2.3) можно определить, например, количество информации, которое мы получим при бросании симметричной и однородной четырехгранной пирамидки: I = log24 = 2 бита

Количество информации, которое мы получаем, достигает максимального значения, если события равновероятны


Сейчас читают про: