Итак, закон силы для покоящихся зарядов имеет вид

F= q1q2r/4pe0r3 (12 2)

В природе самый важный из всех зарядов — это заряд отдель­ного электрона, он равен 1,60•10-19 кулон. Кто работает не с большими зарядами, а с электрическими силами между фун­даментальными частицами, те предпочитают как-то выделить сочетание (qэл)2/4pe0, в котором qэл определяется как заряд элект­рона. Это сочетание часто встречается, и для упрощения рас­четов его обозначают e2; его численное значение в системе СИ оказывается равным (1,52•10-14)2. Удобство пользова­ния константой в этой форме заключается в том, что сила в ньютонах, действующая между двумя электронами, запишется просто как e2/r2 (r дано в метрах), без каких-либо коэффици­ентов. На самом деле электрические силы намного сложней, чем следует из этой формулы, потому что формула относится к покоящимся телам. Сейчас мы рассмотрим более общий случай.

Анализ фундаментальных сил (не сил трения, а электри­ческих сил или сил тяготения) связан с интересным и очень важным понятием.

Теория этих сил намного сложнее, чем об этом следует из закона обратных квадратов. Закон этот действует лишь тогда, когда взаимодействующие тела находятся в покое. Поэтому нужен усовершенствованный метод обращения с очень сложными силами — силами, которые возникают, когда тела начинают двигаться запутанным образом. Как оказалось, для анализа сил такого типа очень полезен подход, основанный на введении понятия «поля». Чтобы пояснить мысль на примере, скажем, электрической силы, положим, что в точке Р находится заряд q1, а в точке R—заряд q2. Сила, действующая между заря­дами, равна

F=q1q2r/r2. (12.3)

Чтобы проанализировать эту силу при помощи понятия поля, мы говорим, что заряд q1 в точке Р создает в точке R такие «условия», при которых заряд q2, попадая в R, «ощущает» дей­ствие силы. Это один из мыслимых путей описания действия силы. Может быть, он выглядит странно: мы говорим, что дей­ствие силы F на заряд q2 в точке R можно разбить на две части — на q2 и Е, причем величина Е существует в точке R безотноси­тельно к тому, есть ли там заряд или нет (лишь бы все прочие заряды были на своих местах). Величина Е есть «условие», соз­данное зарядом q1, a F — ответ, отклик заряда q2 на Е. Вели­чину Е называют электрическим полем. Это — вектор. Формула для электрического поля Е, созданного в точке R зарядом q1 находящимся в точке Р, такова: заряд q1, умноженный на по­стоянную 1/4pe0, деленный на r2 (r — расстояние от Рдо R); поле действует по направлению радиус-вектора (вектор направпения радиус-вектора — это радиус-вектор, деленный на свою длину). Таким образом, выражение для Е таково:

Е =q1r/4pe0r3. (12.4)

А затем мы пишем

F =q2 E, (12.5)

т. е. связываем силу, поле и заряд в поле. В чем же суть всего этого? Суть в том, что анализ разделяется на две части. Одна часть говорит, что что-то создает поле, а другая — что оно дей­ствует на что-то. Позволяя нам рассматривать две части не­зависимо, это разделение упрощает во многих случаях расчеты трудных задач. Когда зарядов много, то сперва мы рассчиты­ваем суммарное электрическое поле, создаваемое этими заря­дами в R, а потом, зная величину заряда, помещенного в R, находим силу, действующую на него.

Да и в случае тяготения мы можем сделать то же самое. Сила теперь F =-Gm1mzr/r3. Анализ полностью совпадает: сила притяжения тела в поле тяготения равна произведению массы тела на поле С. Сила, действующая на m 2, равна массе т2, умноженной на поле С. созданное массой m1, т. е. F = m2C. Значит, поле С, создаваемое массой m1, есть С =- Gm1r/r3; оно, как и электрическое поле, направлено по радиусу.

Такое разделение на две части не так уж тривиально, как могло бы показаться на первый взгляд. Оно было бы триви­альным, было бы просто иной записью того же самого, если бы законы действия сил были совсем просты, но они очень сложны, и оказывается, что поле настолько реально, что почти не зави­сит от объектов, создающих его. Можно колебать заряд, и влияние этого (поле) скажется на расстоянии. Если колебания прекратятся, в поле все равно будут ощущаться следы этих колебаний, потому что взаимодействие двух частиц не про­исходит мгновенно. Оттого и желательно уметь запоминать, что здесь раньше происходило. Если сила действия на заряд зави­сит от того, где другой заряд был вчера и каким он тогда был, то должна быть возможность проследить за тем, что было вчера; в этом и состоит сущность поля. Чем сложнее силы, тем реаль­ней поле, и наша техника разделения становится все менее и менее искусственной.

Желая анализировать силы при помощи полей, мы нуж­даемся в законах двоякого рода. Первые—это отклик на поле. Они дают нам уравнения движения. Например, закон отклика массы на поле тяжести состоит в том, что сила равна массе, умноженной на поле тяжести, или если тело еще и заряжено, то отклик заряда на электрическое поле равен заряду, умно­женному на электрическое поле. Вторая часть анализа природы в таких положениях — это формулировка законов, определяющих напряженность поля и способ его возникновения. Эти за­коны иногда называют уравнениями поля, В нужный момент мы с ними познакомимся, а пока скажем о них лишь несколько

слов.

Вот вам для начала самое замечательное свойство поля, оно абсолютно точно и легко усваивается. Общее электрическое по­ле, создаваемое группой источников, есть векторная сумма полей, создаваемых по отдельности первым, вторым и т. д. источ­никами. Иными словами, когда поле создано множеством заря­дов и если отдельное поле первого есть Е 1, а второго — Е2 и т. д., то мы должны просто сложить эти векторы, чтобы полу­чить общее поле. Принцип этот выражается в виде


Е = Е 1 + Е2 + Е3 +... (12.6) или, в согласии с определением поля,

Можно ли эти методы применить к тяготению? Силу притя­жения двух масс m1и m 2 Ньютон выразил в виде F =- Gm1m2r/r3. Но в соответствии с понятием поля можно ска­зать, что m1создает поле С во всем окружающем пространстве и сила, притягивающая m2, равна

F = m2 C. (12.8)


По аналогии с электричеством

и тогда поле тяжести нескольких масс равно

С = С1 + С2 + С3 +... (12.10)

В гл. 7, где рассматривалось движение планет, мы по существу использовали именно этот принцип. Мы складывали все векто­ры сил, чтобы обнаружить общую силу, действующую на пла­нету. Разделив на ее массу, мы и получим (12.10).

Уравнения (12.6) и (12.10) выражают так называемый прин­цип суперпозиции, или наложения полей. Этот принцип про­возглашает, что общее поле нескольких источников есть сумма полей, создаваемых каждым из них. Насколько нам ныне известно, закон этот в электричестве наверняка выполняется даже тогда, когда заряды движутся и закон сил усложняется. Бывают иногда кажущиеся нарушения, но внимательный анализ всегда доказывает, что просто забыли какой-нибудь из движущихся зарядов. Но в отличие от электрических зарядов для сильных полей тяжести он не совсем точен. В теории тяготения Эйнштейна доказывается, что уравнение Ньютона (12.10) соблюдается лишь приближенно.

С электричеством тесно связана сила другого рода, назы­ваемая магнитной; ее тоже можно анализировать через поня­тие поля. Некоторые из качественных связей между этими си­лами видны в опыте с электронной трубкой (фиг. 12.3).


Фиг. 12.3. Электронная трубка.

На одном конце трубки помещен источник, испускающий поток элект­ронов, а внутри имеется устройство, разгоняющее электроны до большой скорости и посылающее часть их на светящийся экран на другом конце трубки. Световое пятно в центре экра­на, в месте ударов электронов, позволяет проследить за их путем. На пути к экрану пучок проходит сквозь узкую щель между параллельными металлическими пластинами, располо­женными, допустим, плашмя. К пластинам подведено напря­жение, позволяющее любую из них заряжать отрицательно. Напряжение создает между пластинами электрическое поле.

В первой части опыта отрицательное напряжение подается на нижнюю пластину, т. е. на ней образуется избыток элект­ронов. Одноименные заряды отталкиваются, и поэтому светящее­ся пятно на экране взлетает внезапно вверх. (Можно сказать и иначе: электроны «чувствуют» ноле и отвечают отклоне­нием вверх.) Затем переключим напряжение и зарядим отрица­тельно уже верхнюю пластину. Световое пятно на экране опу­стится вниз, показывая, что электроны пучка отталкиваются электронами верхней пластины. (Иначе говоря, электроны «ответили» на изменение направления поля.)

Во второй части опыта напряжение на пластины уже не подается, а вместо этого проверяется влияние магнитного поля на электронный пучок. Для этого необходим подковообразный магнит, достаточно широкий, чтобы «оседлать» практически всю трубку. Предположим, что мы подвели магнит снизу к трубке, обхватили им ее и направили полюсы кверху (в виде буквы U). Мы замечаем, что пятно на экране смещается, скажем кверху, когда магнит приближается снизу. Выходит, что магнит отталкивает пучок. Но не так все просто: если мы пере­вернем магнит, не переставляя его сторон, и приблизим его к трубке сверху, то пятно снова сдвинется вверх, т. е. вместо оттал­кивания наступило притяжение. А теперь вернем магнит в пер­воначальное положение, когда он обхватывал трубку снизу. Да, пятно по-прежнему отклоняется кверху; но повернем маг­нит на 180° вокруг вертикальной оси, чтобы он имел вид буквы U, но уже с переставленными полюсами. Смотрите-ка, пятно прыгает вниз и остается там, даже если мы переворачиваем те­перь U вверх ногами.

Чтобы понять такое своеобразное поведение, нужно приду­мать какую-то иную комбинацию сил. Объясняется все это вот как. Вдоль магнита, от полюса к полюсу, тянется магнитное поле. Оно направлено всегда от одного определенного полюса (который можно снабдить какой-нибудь меткой) к другому. Вращение магнита вокруг его оси не меняет направления поля, а перестановка полюсов местами меняет. Например, если электроны летят горизонтально по оси х, а магнитное поле тоже горизонтально, но направлено по оси у, то магнитная сила, действующая на движущийся электрон, направлена по оси z (вверх или вниз, это уже зависит от того, как направлено поле — по оси у или против нее).

Мы пока не дадим полного закона сил взаимодействия заря­дов, движущихся друг относительно друга в произвольных на­правлениях, потому что он чересчур сложен, но зато приведем формулы для случая, когда поля известны. Действие силы на заряженный предмет зависит от его движения; когда предмет неподвижен, сила, действующая на него, считается пропорцио­нальной заряду с коэффициентом, называемым электрическим полем. Когда тело движется, сила изменяется, и поправка, но­вый «кусок» силы, оказывается линейно зависящей от скорости и направленной поперек скорости v и поперек другой вектор­ной величины — магнитной индукции В. Когда составляющие электрического поля Е и магнитной индукции В суть соответ­ственно х, Еу, Ег,) и х, By, Bz), a составляющие скорости v суть (vx, vy, vz), то составляющие суммарной электрической и магнитной сил, действующих на движущийся заряд q, таковы:


Если случайно магнитное поле имеет только компоненту By, а скорость — только vx, то у магнитной силы остается состав­ляющая вдоль z, поперек В и у.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: