Туннельный диод

Туннельный диод – это диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт-амперной характеристике при прямом напряжении участка отрицательной дифференциальной проводимости.

Туннельные диоды изготовляются из материалов с очень большой концентрацией примесей (1018–1020 см-3). Благодаря этому толщина p-n перехода оказывается очень маленькой: около 10-2 мкм, т.е. на два порядка меньше, чем в других полупроводниковых диодах. Другим следствием большой концентрации примесей является расщепление примесных энергетических уровней с образованием примесных энергетических зон, которые примыкают к дну зоны проводимости в n-области и к потолку валентной зоны в р-области. Уровни Ферми при этом оказываются расположенными в разрешенных зонах (пунктирные линии на рис.7).

В диоде без внешнего напряжения существует туннелирование электронов из n-области в р-область и обратно. Встречные потоки электронов равны, поэтому ток через диод равен нулю (рис.7а).

При небольшом прямом напряжении на туннельном диоде происходит уменьшение высоты потенциального барьера или смещение энергетической диаграммы n-области относительно энергетической диаграммы р-области. Свободные энергетические уровни р-области (занятые дырками), расположенные непосредственно над уровнем Ферми, оказываются на одной высоте по энергетической диаграмме или при тех же энергиях, что и электроны в n-области (рис. 7б). Поэтому будет происходить преимущественное туннелирование электронов из n-области в р-область.

При прямом напряжении на диоде, когда свободные энергетические уровни валентной и примесной зон р-области окажутся на одной высоте с занятыми электронами энергетическими уровнями зоны проводимости и примесной зоны n-области, туннельный ток через диод будет максимальным (рис. 7в).

Рис.7. Вольт-амперная характеристика и энергетические диаграммы туннельного диода.

При дальнейшем увеличении прямого напряжения на диоде туннельный ток через диод будет уменьшаться, так как из-за смещения энергетических диаграмм будет уменьшаться количество электронов, способных туннелировать из n-области в р-область (рис. 7г).

Туннельный ток окажется равным нулю при некотором, еще большем напряжении, когда из-за относительного смещения энергетических диаграмм n- и р-областей для свободных электронов n-области не будет свободных энергетических уровней в р-области (рис. 7д). Однако при этом через диод будет проходить прямой ток, обусловленный переходом носителей через понизившийся потенциальный барьер электронно-дырочного перехода, т.е. инжекционный ток. С дальнейшим увеличением прямого напряжения прямой ток через диод будет возрастать, как и в обычных полупроводниковых диодах (рис. 7е).

При обратном напряжении на туннельном диоде опять возникают условия для туннелирования электронов (рис. 7ж). Только теперь электроны туннелируют из валентной зоны р-области в зону проводимости n-области. Возникающий при этом обратный ток будет расти с увеличением обратного напряжения по абсолютному значению. Таким образом туннельный диод обладает относительно большой проводимостью при обратном напряжении. Можно считать, что у туннельного диода при ничтожно малых обратных напряжений происходит туннельный пробой.

Таким образом, туннельный диод обладает отрицательным дифференциальным сопротивлением в некотором диапазоне прямых напряжений. Поэтому он может быть использован для генерации и усиления электромагнитных колебаний, а также в переключающих схемах.

Основными параметрами туннельных диодов являются (рис.7):

пиковый ток Iп – прямой ток в точке максимума ВАХ;

ток впадины Iв – прямой ток в минимуме ВАХ;

отношение Iп/Iв;

напряжение пика Uп – прямое напряжение, соответствующее пиковому току;

напряжение впадины Uв – прямое напряжение, соответствующее току впадины.

Изменение температуры может по-разному влиять на туннельную составляющую тока и на составляющую, связанную с инжекцией.

1) С повышением температуры уменьшается ширина запрещенной зоны, что приводит к уменьшению толщины потенциального барьера, сквозь который туннелируют электроны, при этом вероятность туннелирования растет. Соответственно увеличивается туннельная составляющая тока и, в частности, растет пиковый ток.

2) С ростом температуры изменяется распределение электронов по энергетическим уровням – количество электронов под уровнем Ферми в зоне проводимости n-области уменьшается, так как часть свободных электронов переходит на более высокие энергетические уровни, а уровень Ферми смещается вниз. Поэтому уменьшается число электронов, которые могут туннелировать из n-области в р-область. Туннельная составляющая прямого тока уменьшается.

Инжекционная составляющая прямого тока растет из-за уменьшения высоты потенциального барьера и перераспределения носителей заряда по энергетическим уровням. Поэтому ток впадины у туннельного диода растет с увеличением температуры.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: