Дисплейные технологии

Существует много разнообразных устройств для вывода изображений, построенных с помощью машинной графики. Наиболее типичными являются электронно-лучевые трубки, плазменные дисплеи, перьевые графопостроители, матричные, электростатические и лазерные печатающие устройства, устройства для фото и киносъемки.

Запоминающие ЭЛТ с прямым копированием изображения (рисование отрезками), векторные дисплеи (рисование отрезками) и растровые сканирующие дисплеи с регенерацией (поточечное рисование) образуют три основных класса дисплеев на ЭЛТ. Развитие электронной технологии позволило использовать в одном дисплее несколько способов изображения. Класс устройств с плоским экраном образуют газоразрядные плазменные, электролюминесцентные дисплеи, дисплеи на жидких кристаллах и дисплеи, построенные на основе светодиодов.

Из всех дисплеев на ЭЛТ наиболее просто устроен дисплей на запоминающей ЭЛТ с прямым копированием изображения. Запоминающую ЭЛТ, называемую также бистабильной запоминающей трубкой, можно рассматривать как ЭЛТ, покрытую люминофором с длительным временем послесвечения. Линия или символ остаются видимыми в течение длительного количества времени (до одного часа). Чтобы нарисовать отрезок, интенсивность луча увеличивают до такой величины, которая вызывает запоминание следа луча на люминофоре. Для стирания изображения подают специальное напряжение, которое снимает свечение люминофора. Экран вспыхивает и принимает исходное (темное) положение. Вся процедура занимает полсекунды. Таким образом, стирается весь экран, а значит, стереть отдельные символы невозможно и нельзя осуществлять динамическое изображение или анимацию.

В отличие от дисплея на запоминающей трубке, в векторном дисплее с регенерацией изображения используется люминофор с очень небольшим временем послесвечения. Такие дисплеи часто называют дисплеями с произвольным сканированием. Из-за малого времени послесвечения изображение на ЭЛТ за секунду изображение должно многократно перерисовываться. Для векторного дисплея с регенерацией кроме ЭЛТ требуется еще два элемента: дисплейный буфер и дисплейный контроллер. Дисплейный буфер - непрерывный участок памяти, содержащий всю информацию, необходимую для вывода изображения на ЭЛТ. Функция дисплейного контроллера заключается в том, чтобы циклически обрабатывать эту информацию со скоростью регенерации. Сложность рисунка ограничивается двумя факторами - размером дисплейного буфера и скоростью контроллера.

На рисунке изображены блок-схемы двух высокопроизводительных векторных дисплеев. В обоих случаях предполагается, что такие геометрические преобразования, как поворот, перенос, масштабирование, перспективное проецирование и отсечение, реализованы аппаратно в геометрическом процессоре.

В первом случае геометрический процессор работает медленнее, чем это необходимо при регенерации изображения. Геометрические данные, посылаемые ЦПУ графическому дисплею, обрабатываются до сохранения в дисплейном буфере. Значит, в нем содержатся только те инструкции, которые необходимы генератору для вывода изображений. Контроллер считывает информацию из дисплейного буфера и посылает генератору. При достижении конца дисплейного буфера контроллер возвращается на его начало, и цикл повторяется снова.

При использовании первой схемы возникает идея двойной буферизации и раздельного изменения изображения и его регенерации. Так как в этой конфигурации геометрический процессор не успевает сгенерировать сложное новое или измененное изображение во время одного цикла регенерации, то дисплейный буфер делится на две части. В то время как измененное изображение обрабатывается и записывается в одну половину буфера, дисплейный контроллер регенирирует ЭЛТ из другой половины буфера. При завершении изменения изображения буферы меняются ролями, и этот процесс повторяется. Таким образом, новое или измененное изображение может генерироваться каждый второй, третий, четвертый и т.д. циклы регенерации. Использование двойной буферизации предотвращает одновременный вывод части старого и части нового измененного изображения в течение одного и более циклов регенерации.

Во второй схеме геометрический процессор работает быстрее, чем необходимо для регенерации достаточно сложных изображений. В этом случае исходная геометрическая база данных, посланная из ЦПУ, сохраняется непосредственно в дисплейном буфере, а векторы обычно задаются в пользовательских координатах в виде чисел с плавающей точкой. Дисплейный контроллер за один цикл регенерации считывает информацию из дисплейного буфера, пропускает ее через геометрический процессор и результат передает генератору векторов. При таком способе обработки геометрические преобразования должны выполняться "на лету" в течение одного цикла регенерации.

Растровое устройство можно рассматривать как матрицу дискретных ячеек (точек), каждая из которых может быть подсвечена. Таким образом, оно является точечно-рисующим устройством. Невозможно, за исключением специальных случаев, непосредственно нарисовать отрезок прямой из одной адресуемой точки или пиксела в матрице в другую адресуемую точку. Отрезок можно только аппроксимировать последовательностями точек (пикселов), близко лежащих к реальной траектории отрезка. Отрезок прямой из точек получится только в случае горизонтальных, вертикальных или расположенных под углом 45 0 отрезков. Все другие отрезки будут выглядеть как последовательности ступенек. Это явление называется лестничным эффектом или «зазубренностью». Чаще всего для графических устройств с растровой ЭЛТ используется буфер кадра. Буфер кадра представляет собой большой непрерывный участок памяти компьютера. Для каждой точки или пиксела в растре отводится как минимум один бит памяти. Эта память называется битовой плоскостью. Для квадратного растра размером 512 х 512 требуется 2 18, или 262144 бита памяти в одной битовой плоскости. Из-за того, что бит памяти имеет только два состояния (двоичное 0 или 1), имея одну битовую плоскость, можно получить лишь черно-белое изображение. Битовая плоскость является цифровым устройством, тогда как растровая ЭЛТ - аналоговое устройство. Поэтому при считывании информации из буфера кадра и ее выводе на графическое устройство с растровой ЭЛТ должно происходить преобразование из цифрового представления в аналоговый сигнал. Такое преобразование выполняет цифро-аналоговый преобразователь (ЦАП).

Цвета или полутона серого цвета могут быть введены в буфер кадра путем использования дополнительных битовых плоскостей. Поскольку существует три основных цвета, можно реализовать простой цветной буфер кадра с тремя битовыми плоскостями, по одной для каждого из основных цветов. Каждая битовая плоскость управляет индивидуальной электронной пушкой для каждого из трех основных цветов. Три основных цвета, комбинируясь на ЭЛТ, дают восемь цветов. Чтобы увеличить количество цветов для каждой из трех цветовых пушек используется дополнительные битовые плоскости.

Растровые дисплеи делятся по типу экрана на:

- Дисплеи на основе ЭЛТ

- Жидкокристаллические (ЖК)

- Плазменные

Чтобы понять принципы работу растровых дисплеев и векторных дисплеев с регенерацией, нужно иметь представление о конструкции ЭЛТ и методах создания видеоизображения.

На рисунке схематично показана ЭЛТ, используемая в видеомониторах.

Катод (отрицательно заряженный) нагревают до тех пор, пока возбужденные электроны не создадут расширяющегося облака (электроны отталкиваются друг от друга, так как имеют одинаковый заряд). Эти электроны притягиваются к сильно заряженному положительному аноду. На внутреннюю сторону расширенного конца ЭЛТ нанесен люминофор. Облако электронов с помощью линз фокусируется с узкий, строго параллельный пучок, и луч дает яркое пятно в центре ЭЛТ. Луч отклоняется или позиционируется влево или вправо от центра и (или) выше или ниже центра с помощью усилителей горизонтального и вертикального отклонения. Именно в данный момент проявляется отличие векторных и растровых дисплеев. В векторном дисплее электронный луч может быть отклонен непосредственно из любой произвольной позиции в любую другую произвольную позицию на экране ЭЛТ (аноде). Поскольку люминофорное покрытие нанесено на экран ЭЛТ сплошным слоем, в результате получается почти идеальная прямая. В отличие от этого в растровом дисплее луч может отклоняться только в строго определенные позиции на экране, образующие своеобразную мозаику. Эта мозаика составляет видеоизображение. Люминофорное покрытие на экране растровой ЭЛТ тоже не непрерывно, а представляет собой множество тесно расположенных мельчайших точек, куда может позиционироваться луч, образуя мозаику.

Экран жидкокристаллического дисплея (ЖКД) состоит из двух стеклянных пластин, между которыми находится масса, содержащая жидкие кристаллы, которые изменяют свои оптические свойства в зависимости от прилагаемого электрического заряда. Жидкие кристаллы сами не светятся, поэтому ЖКД нуждаются в подсветке или во внешнем освещении. Основным достоинством ЖКД являются их габариты (экран плоский). К недостаткам можно отнести недостаточное быстродействие при изменении изображения на экране, что особенно заметно при перемещении курсора мыши, а также зависимость резкости и яркости изображения от угла зрения.

Газоплазменные мониторы состоят из двух пластин, между которыми находится газовая смесь, светящаяся под воздействием электрических импульсов. Такие мониторы не имеют недостатков, присущих ЖКД, однако их нельзя использовать в переносных компьютерах с аккумуляторным и батарейным питанием, так как они потребляют большой ток.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: