Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Оценивание координат состояния систем




Оценивание координат состояния систем требуется в случае необходимости введения в систему автоматического управления корректирующего сигнала от какой-либо координаты состояния xi, которая не измеряется как физическая.

Для этого служит косвенная оценка неизмеряемых координат состояния системы путем введения так называемого “наблюдателя” по Калману [2]. Метод оценки вектора состояния дает возможность “восстановить” неизмеряемые координаты вектора состояния в виде и использовать “восстановленный” вектор состояния системы для решения задачи, например, модального синтеза в пространстве состояний.

Схема оценивания координат состояния реализуется в виде дополнительной динамической аналоговой модели - наблюдателя.

Для получения алгоритма наблюдателя Калмана запишем в векторно-матричной форме уравнения объекта управления

(10.50)

и управляющее воздействие

U = -M + FG , (10.51)

где G - задающее воздействие;

A, B, M, F - матрицы коэффициентов.

Выходные координаты системы задаются в виде

Y = CX .

Оценка координат состояния системы наблюдателем формируется следующим образом:

= A - BM + P( Y - C ) + BFG , (10.52)

где P - тоже матрица коэффициентов.

Рассматривая совместно уравнения (10.50), (10.51) и (10.52), получим

(10.53)

= PCX + (A - BM- PC) + BFG , (10.54)

или в векторно-матричной форме

.

Из полученных уравнений видно, что при использовании наблюдателя порядок всей системы увеличивается до 2n, тогда как n - число координат, которые можно использовать для управления системой, сохраняется.

Характеристическое уравнение системы с наблюдателем имеет вид

. (10.55)

Для оценки точности работы наблюдателя перейдем к новым координатам в виде DX = X - . Вычитая (10.54) из (10.53), получаем

D = AX - PCX - (A - PC) = A[ X - ] - PC[ X - ].

Следовательно,

D = (A - PC) DX. (10.56)

Из уравнения (10.53), заменяя = X - DX, при отсутствии задающего воздействия G имеем

или

(10.57)

Уравнения (10.57) и (10.56) в векторно-матричной форме имеют вид

. (10.58)

Характеристическое уравнение для этой системы будет

.

Оно принимает вид

D(l) = |lE - A + BM|´|lE - A + PC| = 0,

т. е. распадается на два уравнения

|lE - A + BM| = 0, (10.59)

|lE - A + PC| = 0. (10.60)

Последнее обстоятельство дает возможность независимого модального синтеза как основной системы с координатами вектора X по уравнению (10.59), так и системы определения погрешности DX по уравнению (10.60). Требуется, чтобы погрешность наблюдения DX(t) быстро затухала во времени.




Существуют и другие схемы наблюдателей, каждый из которых обладает своими особенностями.





Дата добавления: 2015-06-04; просмотров: 460; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент - человек, постоянно откладывающий неизбежность... 10430 - | 7294 - или читать все...

Читайте также:

 

3.228.24.192 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.