Режимы течения жидкости

Существуют два принципиально различных режима течения жидкости: ламинарный и турбулентный.

Исследованием механизма движения жидкости в различное время занимались многие знаменитые ученые: немецкий инженер-гидравлик Готтхильфом Хаген (иногда Гаген) (1797-1884), русские ученые – химик Д.И. Менделеев (1834-1907) и физик Н.П. Петров (1836-1920), английский физик О. Рейнольдс (1842-1912). Д.И. Менделеев в своей монографии «О сопротивлении жидкостей и о воздухоплавании» в 1880 г. указывал на существование в природе двух режимов движения жидкости с различными законами ее сопротивления. Эта же мысль была развита и доказана в 1883 г. русским физиком Н. П. Петровым (1836—1920), впервые установившим, что при смазке силы трения, определяемые вязким сопротивлением при ламинарном движении, пропорциональны первой степени скорости.

И хотя многие исследователи указывали на различные режимы движения жидкости, наличие двух режимов движения было подтверждено только в 1883 году О. Рейнольдсом. Он наблюдал структуру ламинарного и турбулентного потоков визуально на простой установке (рис. 3.18).

К баку 1 подсоединена горизонтальная стеклянная труба 2 с краном 3. Над баком установлен сосуд 4 с окрашенной жидкостью, которая подаётся в трубу 2 по тонкой трубке 5, снабжённой краником 6. В бак 1 заливается вода, и уровень её поддерживается постоянным. Затем открытием крана 3 в трубе 2 создают поток, в который подают тонкую струйку окрашенной жидкости. Постепенным открытием крана 2 можно повышать расход, а, следовательно, и скорость жидкости в трубе.

Рис. 3.18. Режимы течения жидкости

Исследования показали, что при небольших скоростях течения введённая краска не перемешивается с потоком, а наблюдается плавное слоистое течение без поперечного перемешивания частиц (молекулярное перемешивание происходит даже в покоящейся жидкости).

Это так называемое ламинарное течение – слоистое течение частиц жидкости без перемешивания и без пульсаций скоростей и давлений (рис. 3.18,а). При ламинарном течении жидкости в прямой трубе постоянного сечения все линии тока направлены параллельно оси трубы, поперечные перемещения жидкости отсутствуют.

При увеличении скорости течения воды картина течения вначале не меняется, но затем при достижении определённой скорости наступает быстрое её изменение. Струйка краски на выходе начинает колебаться (рис. 3.18,б), затем размываться и перемешиваться с потоком жидкости. При этом становится заметным вихреобразование и вращательное движение жидкости. Течение становится турбулентным (рис. 3.18, в).

Турбулентным называется течение, сопровождающееся интенсивным перемешиванием частиц жидкости и вихреобразованием, а также пульсациями скоростей и давлений.

При турбулентном течении движение отдельных частиц оказывается подобным хаотическому движению молекул газа. Происходит перемешивание жидкости, сопровождающееся продольным и поперечным перемещением и вращательным движением отдельных объёмов жидкости.

Тогда же О. Рейнольдс обратил внимание на связь этих режимов с определёнными интервалами числовых значений критерия, который впоследствии был назван его именем.

, (критерий Рейнольдса) (3.49)

где - средняя скорость движения жидкости;

- диаметр трубопровода;

- кинематическая вязкость жидкости.

Оказалось, что относительно малым значениям числа Рейнольдса соответствует ламинарный режим, а относительно большим - турбулентный.

Многочисленными опытами установлено, что при напорном течении в круглой трубе нижнее значение числа Рейнольдса составляет примерно Reн.кр» 2300, а верхнее - Reв.кр» 4000.

Число Рейнольдса, ниже которого наблюдается устойчивое ламинарное течение, получило название нижнего критического, т.е.

- ламинарное течение.

При числе Рейнольдса, превышающем верхнее критическое, наблюдается устойчивый турбулентный режим:

- турбулентное течение.

В узком интервале чисел Рейнольдса между критическим нижним и критическим верхним наблюдается «переходный режим», не имеющий самостоятельного значения и отличающийся крайней неустойчивостью:

- переходной режим.

В этом диапазоне значений чисел может существовать как ламинарное, так и турбулентное течение, но оба они здесь неустойчивы и легко переходят друг в друга.

Наличие двух режимов можно объяснить тем, что при малых числах Рейнольдса, силы вязкости достаточно велики по сравнению с инерционными силами. Поэтому тормозящее (направляющее) воздействие стенок, осуществляемое через механизм внутреннего трения, распространяется на всю толщу потока. При больших числах Рейнольдса, т.е. при относительно малой роли вязкости, направляющее воздействие стенок может оказаться настолько слабым, что отдельные частицы жидкости под влиянием всякого рода возмущений начнут совершать собственные движения, характерные для турбулентного потока.

Нижнее критическое число Рейнольдса имеет относительно стабильное значение, верхнее же может существенно изменяться под воздействием различных факторов: наличие или отсутствие возмущений на входе, степени шероховатости стенок, наличия или отсутствия вибрации трубы, степени её интенсивности и др.

В связи с этим число Reкp, соответствующее переходу от ламинарного течения к турбулентному, может получиться несколько больше, чем Reкp для обратного перехода. В особых лабораторных условиях при полном отсутствии факторов, способствующих турбулизации потока, можно получить ламинарное течение при Re, значительно превышающем Re н.кp. Однако в этих случаях ламинар­ное течение оказывается настолько неустойчивым, что достаточно небольшого возмущения (толчка), чтобы оно перешло в турбулент­ное. На практике обычно имеются условия, способствующие турбулизации, - вибрация труб, местные гидравлические сопротивле­ния, неравномерность (пульсация) расхода и прочее, а потому ука­занное обстоятельство имеет в гидравлике скорее принципиальное, чем практическое, значение.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: