Типы и область применения паровых турбин

Паровые турбины применяют большей частью в стационарных установках на тепловых электрических станциях для приводов генераторов тока, реже в небольших промышленных установках для привода вентиляторов, насосов.

По характеру теплового процесса турбины подразделяют на конденсационные с выбросом всего пара в конденсатор и теплофикационные (конденсационные с регулируемым отбором пара и турбины с противодавлением), в которых часть или весь пар отбирают из промежуточных ступеней давления для производственных нужд, отопления и горячего водоснабжения. Общий коэффициент использования теплоты топлива при применении теплофикационных турбин (на ТЭЦ) достигает 80% и более.

По параметрам свежего пара различают турбины среднего давления 3,43 МПа и температурой 708 К (435 °С), повышенного давления 8,8 МПа и температурой 808 К (535 °С), высокого давления 12,75 МПа и температурой 838 К (565° С) и сверхкритических параметров: давление 23,55 МПа и температура 838 К (565° С).

По числу корпусов (цилиндров) турбины могут быть одноцилиндровые, двухцилиндровые и многоцилиндровые.

По числу ступеней — одноступенчатые (маломощные) и многоступенчатые активного и реактивного типов малой, средней и большой мощности до 800 МВт при сверхкритнческих параметрах пара.

Паровые турбины обладают преимуществами перед другими двигателями. Они дают возможность в одном агрегате получить высокую мощность и высокий КПД, использовать любые виды топлива для получения пара, использовать отработавшую в них энергию для получения пара или горячей воды; отличаются относительно небольшими габаритами и надежны в работе.

Паровые турбины - принцип работы

Паровые турбины работают следующим образом: пар, образующийся в паровом котле, под высоким давлением, поступает на лопатки турбины. Турбина совершает обороты и вырабатывает механическую энергию, используемую генератором. Генератор производит электричество.

Электрическая мощность паровых турбин зависит от перепада давления пара на входе и выходе установки. Мощность паровых турбин единичной установки достигает 1000 МВт.

В зависимости от характера теплового процесса паровые турбины подразделяются на три группы: конденсационные, теплофикационные и турбины специального назначения. По типу ступеней турбин они классифицируются как активные и реактивные.

Конденсационные паровые турбины

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум (отсюда возникло наименование). Конденсационные турбины бывают стационарными и транспортными.

Стационарные турбины изготавливаются на одном валу с генераторами переменного тока. Такие агрегаты называют турбогенераторами. Тепловые электростанции, на которых установлены конденсационные турбины, называются конденсационными электрическими станциями (КЭС). Основной конечный продукт таких электростанций — электроэнергия. Лишь небольшая часть тепловой энергии используется на собственные нужды электростанции и, иногда, для снабжения теплом близлежащего населённого пункта. Обычно это посёлок энергетиков. Доказано, что чем больше мощность турбогенератора, тем он экономичнее, и тем ниже стоимость 1 кВт установленной мощности. Поэтому на конденсационных электростанциях устанавливаются турбогенераторы повышенной мощности.

Частота вращения ротора стационарного турбогенератора связана с частотой электрического тока 50 Герц. То есть на двухполюсных генераторах 3000 оборотов в минуту, на четырёхполюсных соответственно 1500 оборотов в минуту. Частота электрического тока вырабатываемой энергии является одним из главных показателей качества отпускаемой электроэнергии. Современные технологии позволяют поддерживать частоту вращения с точностью до трёх оборотов. Резкое падение электрической частоты влечёт за собой отключение от сети и аварийный останов энергоблока, в котором наблюдается подобный сбой.

В зависимости от назначения паровые турбины электростанций могут быть базовыми, несущими постоянную основную нагрузку; пиковыми, кратковременно работающими для покрытия пиков нагрузки; турбинами собственных нужд, обеспечивающими потребность электростанции в электроэнергии. От базовых требуется высокая экономичность на нагрузках, близких к полной (около 80 %), от пиковых — возможность быстрого пуска и включения в работу, от турбин собственных нужд — особая надёжность в работе. Все паровые турбины для электростанций рассчитываются на 100 тыс. ч работы (до капитального ремонта).

Схема работы конденсационной турбины: Свежий (острый) пар из котельного агрегата (1) по паропроводу (2) попадает на рабочие лопатки паровой турбины (3). При расширении, кинетическая энергия пара превращается в механическую энергию вращения ротора турбины, который расположен на одном валу (4) с электрическим генератором (5). Отработанный пар из турбины направляется в конденсатор (6), в котором, охладившись до состояния воды путём теплообмена с циркуляционной водой (7) пруда-охладителя, градирни или водохранилища по трубопроводу (8) направляется обратно в котельный агрегат при помощи насоса (9). Большая часть полученной энергии используется для генерации электрического тока.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: