Электрические нагреватели

1.1. Открытые электронагреватели

Корпусная основа электронагревателя — керамическая плита, в верхней плоскости которой имеются специальные углубления (канавки). В эти канавки укладывают одну или несколько электрических спиралей, концы которых присоединяют к клеммам. Керамическое основание обычно располагается в специальном металлическом кор­пусе, но верхняя плоскость остается открытой, и спираль фактически находится в воздухе.

Если опорой для спирали служит металлическая или другая токопроводящая плита, то электрическую спираль помещают в керамические бусы или в другой изолятор, играющий роль диэлектрической прослойки.

Открытый электронагревательный элемент:

1 — канавки; 2 — клеммы; 3 — нагревательная спираль (проволока); 4 — керамическое основание

При подключении к электрической сети спираль быстро нагревается до температуры более 800 0С и излучает тепловую энергию в виде потока инфракрасного излучения. Поскольку воздух прозрачен по отношению к этому потоку и не поглощает его, то практически вся энергия достигает обогреваемой поверхности. В результате электронагреватель характеризуется высоким КПД, легко переходит с одного режима мощности на другой.

Однако открытый электронагреватель не выдерживает критики с позиций электробезопасности и надежности. Срок службы открытых электронагревателей невелик и применяют их сравнительно редко.

1.2 Закрытые электронагреватели

В пазах-канавках чугунного корпуса электронагревателя уложены электрические спи­рали. Для исключения контакта с корпусом спирали помещены в электроизоляционную керамическую массу.

Электронагреватели закрытого типа электро- и пожаробезопасны. Срок их службы в 1,5 — 2,5 раза больше, чем у нагревателей открытого типа. Однако они очень массивны, из-за чего долго разогреваются и медленно остывают. Поэтому с помощью электронагревателей не удается точно поддерживать требуемые параметры тепловых аппаратов. Поскольку нагрев продукта обычно происходит благодаря нагреву в посуде, размещаемой на плоской поверх­ности нагревателя, а в зоне контакта нет плотного со­прикосновения поверхнос­тей, КПД такого электронаг­ревателя невысок (до 30 %).

Прямоугольная чугунная конфорка для электроплит

(закрытый электронагревательный элемент):

1 — нагревательная спираль; 2 — пазы-канавки; 3 — ребра; 4 — корпус (отливка из чугуна); 5 — слой электроизоляционной массы; 6 — тепловая изоляция из двух слоев фольги и листового асбеста; 7 — верхняя шина; 8 — соединительные провода; 9 — колодка; 10 — нижняя шина; 11 — средняя шина; 12 — воздушная прослойка; 13 — стальной кожух; 14 — стальной лист с од­нослойной прокладкой из алюминиевой фольги

1.3 Герметичные электронагреватели

Наиболее широко применяют трубчатые электронагреватели (сокращенно ТЭНы). В таких нагревателях нихромовая спираль находится в центре стальной трубки, игра­ющей роль корпуса. Между корпусом и спиралью насы­пан слой диэлектрического порошка. Таким порошком служит периклаз — оксид магния, по свойствам очень похожий на обычный кварцевый песок. Концы спирали приварены к контактным стержням, имеющим резьбу для крепления клемм при помощи гаек. Торцы трубок в зоне отвода стержней плотно закрыты керамическими пробками, а зазоры между пробкой и корпусом, а также между пробкой и контактным стержнем пропитаны термо­стойким лаком. В результате нагревательная спираль полностью изолирована от воздуха.

В процессе изготовления ТЭНы осаживают в специальных вальцовых машинах, в результате чего диаметр трубки уменьшается, а слой диэлектрика спрессовывается. Благодаря этому образуется монолитная конструкция, которой можно придавать различную форму.

Выпускают ТЭНы в трех исполнениях: водяные, масляные и воздушные. Название ТЭНов свидетельствует о роде нагреваемой среды, в которой они должны работать.

Трубчатые электронагреватели

(герметичный электронагрева­тельный элемент):

а — ТЭН в разрезе; б — блоки ТЭНов для пищеварочных котлов;

1 — стальная трубка; 2 — нагревательная спираль из нихромовой проволоки; 3 — электроизоля­ционный слой (периклаз); 4— стальной контактный стержень; 5— стальной штуцер с наружной резьбой; 6 — фарфоровая пробка; 7 — слой термостойкого лака

Водяные ТЭНы при той же электрической мощности и напряжении имеют длину трубки значительно меньше, чем воздушные. Это вызвано тем, что в воде теплоотдача происходит интенсивнее, чем в масле или в воздухе. Поэтому водяной ТЭН, оказавшись в воздухе, перегревается и его спираль может сгореть. При эксплуатации нагревателя следует следить, чтобы он всегда был погружен в воду (а масляный ТЭН в масло).

1.4 Электродные электронагреватели

Среди электрических нагревательных элементов наиболее просты и долговечны электродные, основной конструктивный элемент которых — электроды, соприкасающиеся с продуктом (ЭК-нагрев) или нагреваемой средой (жидким электролитом — электродный нагрев). Во втором случае нагреваемую среду и электроды в ней называют теплогенерирующим устройством.

Таким образом, для непосредственного электроконтактного нагрева достаточно нагреваемую среду (продукт) поместить меж­ду электродами и подать соответствующее напряжение. Высокая экономичность и простота конструкции, возможность нагрева до 50...700С за 15...60с. сочетаются с такими отрицательными явле­ниями, как возможность электролиза нагреваемой среды, эрозии электродов и диффузии металла с поверхности электрода в нагреваемую среду, что может привести к нежелательному ее загрязнению.

Электродные теплогенерирующие устройства имеют емкость с электролитом, в качестве которого часто используют раствор соды (Na2CO3) в дистиллированной воде. В раствор опущены электроды, изготовленные обычно из специальной стали в виде полос длиной 0,3...2,5 м. Концентрация растворов зависит от подаваемого напряжения, а выделяемая теплота — от удельного сопротивления электролита, площади электродов и расстояния между ними.

Схема устройства электродного нагревателя:

а — с плоскими электродами: L — ширина пластины; h — глубина погружения; b — расстояние между пластинами; б — с изогнутыми (спиральными) электродами:

1 — основной электрод; 2 — проходной изолятор; 3 — стержень-держатель; 4 — вспо­могательный электрод; 5 — трубка слива

Электродные нагреватели не выходят из строя даже при полном отсутствии электролита. Однако возможность появления опасного потенциала на корпусе и зависимость выделяемой теплоты от концентрации электролита ограничивают их использование.

1.5 Генераторы инфракрасного излучения

Принцип действия любого генератора инфракрасного излучения (ИК-генератора) основан на испускании электромагнитных волн нагретыми до высоких температур поверхностями, которые могут быть использова­ны совместно с отражателями различной формы, распределяющими излучаемую энергию в заданном направлении и позволяющими добиться равномерного распределения лучистого потока по облучаемой поверхности.

В качестве ИК-генераторов используют открытые, закрытые и герметичные электрические нагревательные элементы, непосред­ственно облучающие поверхность обрабатываемой среды или продукта либо нагревающие поверхность, которая играет роль вторичного излучателя (дающего более равномерное и менее интенсивное распределение лучистой энергии по облучаемой поверхности).

В открытых конструкциях кварцевых излучателей в качестве рабочего элемента используют нихромовую спираль. Помещают спираль в кварцевую трубку, которая служит опорным элементом, предохраняет спираль от провисания, уменьшает охлажде­ние спирали конвективными потоками среды и защищает персонал от поражения электрическим током. Рабочая температура спи­рали составляет от 1000 до 1200 0С.

Высокие температуры спирали и прямой контакт с воздухом вызывают быстрое ее окисление и предопределяют малый срок службы (до 3 тыс. ч). Ресурс работы можно увеличить, герметизи­ровав трубку с предварительным вакуумированием или заполне­нием инертным газом.

Схема ИК-излучателя:

1 — наружный вывод; 2 — ребристый шов; 3 — кварцевые держатели; 4 — среднее фольговое звено; 5— внутренний ввод электродов; 6— вольфрамовая спираль; 7— поддержка; 8 — кварцевая трубка


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: