Основные положения теории электропроводности

ПОЛУПРОВОДНИКОВЫЕ КОМПОНЕНТЫ ЭЛЕКТРОННЫХ ЦЕПЕЙ

ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКОВ

К полупроводникам относятся материалы, которые при комнатной температуре имеют удельное электрическое сопротивление от 10-5 до 1010 Ом·см (в полупроводниковой технике принято измерять сопротивление 1 см3 материала). Количество полупроводников превышает количество металлов и диэлектриков. Наиболее часто используются кремний, арсенид галлия, селен, германий, теллур, разные оксиды, сульфиды, нитриды и карбиды.

Основные положения теории электропроводности.

Атом состоит из ядра, окруженного облаком электронов, которые находятся в движении на некотором расстоянии от ядра в пределах слоев (оболочек), определяемых их энергией. Чем дальше от ядра находится вращающийся электрон, тем выше его энергетический уровень. Свободные атомы имеют дискретный энергетический спектр. При переходе электрона с одного разрешенного уровня на другой, более отдаленный, происходит поглощение энергии, а при обратном переходе –ее выделение. Поглощение и выделение энергии может происходить только строго определенными порциями –квантами. На каждом энергетическом уровне может находиться не более двух электронов. Расстояние между энергетическими уровнями уменьшается с увеличением энергии. «Потолком» энергетического спектра является уровень ионизации, на котором электрон приобретает энергию, позволяющую ему стать свободным и покинуть атом.

Если рассматривать структуру атомов различных элементов, то можно выделить оболочки, которые полностью заполнены электронами (внутренние), и незаполненные оболочки (внешние). Последние слабее связаны с ядром, легче вступают во взаимодействие с другими атомами. Поэтому электроны, расположенные на внешней недостроенной оболочке, называют валентными.

а) б)

Рис.2.1. Структура связей атомов германия в кристаллической решетке и условные обозначения запрещенных и разрешенных зон.

При образовании молекул между отдельными атомами действуют различные типы связей. Для полупроводников наиболее распространенными являются ковалентные связи, образующиеся за счет обобществления валентных электронов соседних. Например в кремнии, атом которого имеет четыре валентных электрона, в молекулах возникают ковалентные связи между четырьмя соседними атомами (рис.2.1,а).

Если атомы находятся в связанном состоянии, то на валентные электроны действуют поля электронов и ядер соседних атомов, в результате чего каждый отдельный разрешенный энергетический уровень атома расщепляется на ряд новых энергетических уровней, энергии которых близки друг к другу. На каждом из этих уровней могут также находиться только два электрона. Совокупность уровней, на каждом из которых могут находиться электроны, называют разрешенной зоной (1; 3 на рис. 2.1, б). Промежутки между разрешенными зонами носят название запрещенных зон (2 на рис. 2.1, б). Нижние энергетические уровни атомов обычно не образуют зон, так как внутренние электронные оболочки в твердом теле слабо взаимодействуют с соседними атомами, будучи как бы «экранированными» внешними оболочками. В энергетическом спектре твердого тела можно выделить три вида зон: разрешенные (полностью заполненные) зоны, запрещенные зоны и зоны проводимости.

Разрешенная зона характеризуется тем, что все уровни ее при температуре 0 К заполнены электронами. Верхнюю заполненную зону называют валентной.

Запрещенная зона характеризуется тем, что в ее пределах нет энергетических уровней, на которых могли бы находиться электроны.

Зона проводимости характеризуется тем, что электроны, находящиеся в ней обладают энергиями, позволяющими им освобождаться от связи с атомами и передвигаться внутри твердого тела, например под воздействием электрического поля.

Разделение веществ на металлы, полупроводники и диэлектрики выполняют в исходя из зонной структуры тела при температуре абсолютного нуля.

У металлов валентная зона и зона проводимости взаимно перекрываются, поэтому при 0 К металл обладает электропроводностью.

У полупроводников и диэлектриков зона проводимости при 0 К пуста и электропроводность отсутствует. Различия между ними чисто количественные – в ширине запрещенной зоны ΔЭ. У наиболее распространенных полупроводников ΔЭ=0,1÷3 эВ (у полупроводников, на основе которых в будущем надеются создать высокотемпературные приборы, ΔЭ=3÷6 эВ), у диэлектриков ΔЭ>6 эВ.

В полупроводниках при некотором значении температуры, отличном от нуля, часть электронов будет иметь энергию, достаточную для перехода в зону проводимости. Эти электроны становятся свободными, а полупроводник–электропроводным.

Уход электрона из валентной зоны приводит к образованию в ней незаполненного энергетического уровня. Вакантное энергетическое состояние носит название дырки. Валентные электроны соседних атомов в присутствие электрического поля могут переходить на эти свободные уровни, создавая дырки в другом месте. Такое перемещение электронов можно рассматривать как движение положительно заряженных фиктивных зарядов–дырок.

Электропроводность, обусловленную движением свободных электронов, называют электронной, а электропроводность, обусловленную движением дырок, – дырочной.

У абсолютно чистого и однородного полупроводника при температуре отличной от 0 К, свободные электроны и дырки образуются попарно, т.е. число электронов равно числу дырок. Электропроводность такого полупроводника (собственного), обусловленная парными носителями теплового происхождения, называется собственной.

Процесс образования пары электрон – дырка называют генерацией пары. При этом генерация пары может быть следствием не только воздействия тепловой энергии (тепловая генерация), но и кинетической энергии движущихся частиц (ударная генерация), энергии электрического поля, энергии светового облучения (световая генерация) и т.д.

Образовавшиеся в результате разрыва валентной связи электрон и дырка совершают хаотическое движение в объеме полупроводника до тех пор, пока электрон не будет «захвачен» дыркой, а энергетический уровень дырки не будет «занят» электроном из зоны проводимости. При этом разорванные валентные связи восстанавливаются, а носители заряда–электрон и дырка – исчезают. Этот процесс восстановления разорванных валентных связей называют рекомбинацией.

Промежуток времени, прошедший с момента генерации частицы, являющейся носителем заряда, до ее рекомбинации называют временем жизни, а расстояние, пройденное частицей за время жизни, – диффузионной длиной. Так как время жизни каждого из носителей различно, то для однозначной характеристики полупроводника под временем жизни чаще всего понимают среднее (среднестатистическое) время жизни носителей заряда, а под диффузионной длиной – среднее расстояние, которое проходит носитель заряда за среднее время жизни. Диффузионная длина и время жизни электронов и дырок связаны между собой соотношениями

; (2,1)

где , – диффузионная длина электронов и дырок;

, – время жизни электронов и дырок;

– коэффициенты диффузии электронов и дырок (плотность потоков носителей зарядов при единичном градиенте их концентраций).

Среднее время жизни носителей заряда численно определяется как промежуток времени, в течение которого концентрация носителей заряда, введенных тем или иным способом в полупроводник уменьшится в е раз (е ≈2,7).

Если в полупроводнике создать электрическое поле напряженностью Е, то хаотическое движение носителей заряда упорядочится, т.е. дырки и электроны начнут двигаться во взаимно противоположных направлениях причем дырки – в направлении, совпадающем с направлением электрического поля. Возникнут два встречно направленных потока носителей заряда, создающих токи, плотности которых равны

Jn др= qnμnE; Jp др= qpμpE, (2,2)

где q– заряд носителя заряда (электрона);

n, p –число электронов и дырок в единице объема вещества (концентрация);

μn, μp подвижность носителей заряда.

Подвижность носителей заряда есть физическая величина, характеризуемая их средней направленной скоростью в электрическом поле с напряженностью 1В/см; μ = v/E, где v– средняя скорость носителя.

Так как носители заряда противоположного знака движутся в противоположных направлениях, то результирующая плотность тока в полупроводнике

J др = Jn др+ Jp др=(qnμn+qpμp) E (2.3)

Движение носителей заряда в полупроводнике, вызванное наличием электрического поля и градиента потенциала, называют дрейфом, а созданный этими зарядами ток – дрейфовым током.

Движение под влиянием градиента концентрации называют диффузией.

Удельную проводимость полупроводника σ можно найти как отношение удельной плотности тока к напряженности электрического поля

σ =1/ρ= J/E=qnμn+qpμp,

где ρ – удельное сопротивление полупроводника.

Примесная электропроводность. Электрические свойства полупроводников зависят от содержания в них атомов примесей, а также от от различных дефектов кристаллической решетки: пустых узлов решетки, атомов или ионов, находящихся между узлами решетки, и т. д. Примеси бывают акцепторные и донорные.

Акцепторные примеси. Атомы акцепторных примесей способны принимать извне один или несколько электронов, превращаясь в отрицательный ион.

Если, например, в кремний ввести трехвалентный атом бора, то образуется ковалентная связь между бором и четырьмя соседними атомами кремния и получается устойчивая восьмиэлектронная оболочка за счет дополнительного электрона, отобранного у одного из атомов кремния. Этот электрон будучи «связанным» превращает атом бора в неподвижный отрицательный ион (рис 2.2, а). На месте ушедшего электрона образуется дырка, которая добавляется к собственным дыркам, порожденным нагревом (термогенерацией). При этом в полупроводнике концентрация дырок превысит концентрацию свободных электронов собственной проводимости (p>n). Следовательно в полупроводнике

а) б)

Рис.2.2. Структура (а) и зонная диаграмма (б) полупроводника с акцепторными примесями.

будет преобладать дырочная электропроводность. Такой полупроводник называют полупроводником p–типа.

При приложении к этому полупроводнику напряжения будет преобладать дырочная составляющая тока, т.е. Jn<Jp.

Если содержание примесей мало, что чаще всего имеет место, то их атомы можно рассматривать как изолированные. Их энергетические уровни не расщепляются на зоны. На зонной диаграмме (рис. 2.2,б) примесные уровни изображены штрихами. Валентные уровни акцепторной примеси расположены в нижней части запрещенной зоны, поэтому при небольшой дополнттельной энергии (0,01 – 0,05 эВ) электроны из валентной зоны могут переходить на этот уровень, образуя дырки. При низкой температуре вероятность перехода электронов через запрещенную зону во много раз меньше вероятности их перехода из валентной зоны на уровень акцепторной примеси.

Если концентрация примесей в полупроводнике достаточно велика, то уровни акцепторной примеси расщепляются, образуя зону, которая может слиться с валентной зоной. Такой полупроводник называется вырожденным. В вырожденном полупроводнике концентрация носителей заряда собственной электропроводности значительно меньше, чем в невырожденном. Поэтому их качественной особенностью является малая зависимость характеристики полупроводника от температуры окружающей среды. При этом доля тепловых носителей заряда собственной электропроводности по сравнению с примесными будет невелика.

Донорные примеси. Атомы донорных примесей имеют валентные электроны, слабо связанные со своим ядром (рис. 2.3, а). Эти электроны, не участвуя в межатомных связях, могут легко перейти в зону проводимости материала, в который была введена примесь. При этом в решетке остается положительно заряженный ион, а электрон добавится к свободным электронам

а) б)

Рис.2.3. Структура (а) и зонная диаграмма (б) полупроводника с донорными примесями.

собственной электропроводности. Донорный уровень находится в верхней части части запрещенной зоны (рис. 2.3, б). Переход электрона с донорного уровня в зону проводимости происходит тогда, когда он получает небольшую дополнительную энергию. В этом случае концентрация свободных электронов в полупроводнике превышает концентрацию дырок и полупроводник обладает электронной электропроводностью. Такие полупроводники называют полупроводниками n–типа. Если, например в кремний ввести атом пятивалентного фосфора, то четыре его валентных электрона вступят в ковалентную смязь с четырьмя электронами кремния и окажутся в связанном состоянии (рис. 2.3, а). Оставшийся электрон фосфора становится свободным. При этом концентрация свободных электронов выше концентрации дырок, т.е. преобладает электронная электропроводность. При увеличении концентрации примесей уровни доноров расщепляются, образуя зону, которая может слиться с зоной проводимости. Полупроводник становится вырожденным.

Носители зарядов, концентрация которых преобладает в полупроводнике, называют основными, а носители зарядов, концентрация которых в полупроводнике меньше, чем основных, называют неосновными.

В примесном полупроводнике при низких температурах преобладает примесная электропроводность. Однако по мере повышения температуры собственная электропроводность непрерывно возрастает, в то время как примесная имеет предел, соответствующий ионизации всех атомов примеси. Поэтому при достаточно высоких температурах электропроводность всегда собственная.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: