Из бурого угля

В процессе проведения исследований было обнаружено новое явление – при определенных условиях взаимодействия бурого угля с реакционной средой бурый уголь из твердого агрегатного состояния переходит в жидкое агрегатное состояние при комнатной температуре и атмосферном давлении, и установлены граничные условия фазовых переходов.

Это открытие позволило на его основе создать современную технологию получения синтетических жидких топлив из бурого угля.

Эта технология включает следующие основные стадии: ожижение, очистку и плазмохимический каталитический крекинг.

На первой стадии осуществляется процесс ожижения бурого угля. В размольно-смесительный аппарат, представляющий собой двухчервячный смеситель непрерывного действия, загружается бурый уголь и модифицирующие добавки. В процессе размола и гомогенизации компонентов смеси осуществляется модификация бурого угля: изменяется высокомолекулярная структура, состав фрагментов, разрушаются электронно-донорно-акцепторные связи, что приводит к деполимеризации бурого угля и превращению его в жидкую углеводородную смесь.

По физико-химическим свойствам полученная жидкая углеводородная смесь является близкой к нефти.

Дальнейшая переработка жидкого бурого угля осуществляется в условиях, аналогичных процессам переработки нефти.

Содержание минеральных веществ в буром угле превышает их содержание в нефтяном сырье. При переработке бурого угля в синтетическое жидкое топливо необходимо применение совершенных процессов фракционирования и разделения углеводородной и минеральной составляющих.

На второй стадии осуществляется очистка жидкого бурого угля от механических примесей, взвешенных частиц, солей, серы и других компонентов, подлежащих удалению. Очистка осуществляется оригинальным, не имеющим аналогов, способом – термо-гравитационной очисткой.

Установка термо-гравитационной очистки жидкого бурого угля не имеет вращающихся, изнашиваемых частей и фильтров, отличается низкими энергетическими затратами и эксплуатационными расходами.

На третьей стадии осуществляется углубленная переработка жидкого бурого угля в синтетическое жидкое топливо.

Группа ученых, работающих в области физики разрядных явлений, создала принципиально новую плазмохимическую технологию переработки жидкого бурого угля. В основу новой технологии заложены результаты фундаментальных научных исследований свойств плотной плазмы, позволившие обеспечить максимальную концентрацию электрофизического воздействия на объект обработки.

По новой технологии углеводородное сырье, в отличие от традиционного многоступенчатого процесса, перерабатывается в одну стадию. На выходе получают:

- низкооктановый бензин,

- высокооктановый бензин,

- дизельное топливо

- жидкое топливо для энергетических установок.

Переработка углеводородного сырья осуществляется в плазмохимическом реакторе, который представляет собой стальной вертикальный аппарат колонного типа. В корпусе реактора размещен стационарный слой катализатора необходимой высоты. Очищенное и подготовленное углеводородное сырье при комнатной температуре равномерно подается в колонну снизу. В колонну сверху подается мощный поток микроволнового излучения. В объеме катализатора генерируется микроволновая плотная плазма, катализатор и реагент разогреваются до рабочей температуры, в слое катализатора осуществляется каталитический крекинг углеводородного сырья и другие реакционные превращения. В верхнюю зону колонны поступает катализат в газообразном виде, который выводится из колонны и подается на последующую стадию приготовления топлива.

Для плазмохимической технологии переработки углеводородного сырья создан специальный полифункциональный катализатор, позволяющий в одну стадию при одном проходе углеводородного сырья проводить до 4-х реакций одновременно. При проведении процесса не требуется применение водорода.

Содержание общей серы в углеводородном сырье не лимитируется, при этом ее содержание в готовых продуктах составляет не более 0,01 %.

Определены оптимальные параметры электрофизической активации системы катализатор-реагент, обеспечивающие значительное повышение эффективности каталитической конверсии углеводородного сырья.

Температура каталитических преобразований снижена в среднем в 2 раза. Каталитические процессы крекинга углеводородного сырья осуществляются в диапазоне температур от комнатной до 300°С и атмосферном давлении. При этом скорость реакционных процессов возрастает в среднем в 200 раз.

Важным преимуществом плазмохимической технологии переработки углеводородного сырья является значительное упрощение и удешевление традиционных процессов его переработки с одновременным увеличением выхода бензина, дизельного топлива и других целевых продуктов и повышением их качества.

Новая технология исключает затраты на проведение целого ряда сложных процессов. За счет этого капитальные и эксплуатационные затраты по сравнению с традиционной технологией снижаются в среднем в 10 раз.

Плазмохимическая технология переработки углеводородного сырья снижает энергоемкость производственных процессов.

Себестоимость синтетического жидкого топлива, получаемого из бурого угля, ниже, чем себестоимость жидкого топлива, получаемого из нефтяного сырья.

Главным преимуществом плазмохимической технологии переработки углеводородного сырья, безусловно, является предоставляемая ею возможность получения моторных топлив из альтернативного нефти твердого органического сырья - бурого угля, в экономически рентабельных условиях.

Моторные топлива (бензин, дизельное топливо), полученные из бурого угля, по физико-химическим свойствам аналогичны моторным топливам, полученным из нефтяного сырья. Сжигание этих топлив в двигателях внутреннего сгорания не требует модификации двигателей.

Дефицит мировых топливно-энергетических ресурсов требует как рационального использования имеющихся, так и разработки способов получения новых видов топлива, удовлетворяющих энергетическим и экологическим требованиям.

Ограниченность запасов углеводородов не позволяет многим странам глобально решить проблему увеличения добычи энергетического сырья нефтяного происхождения.

В то же время такие, например, страны, как Украина и Казах­стан, а также сибирские регионы России располагают собственной мощной ресурсной базой сырья, пригодного для производства альтернативного жидкого топлива для энергетических установок – эмульсионного.

Наиболее интенсивные работы в области разработки способов получения и применения альтернативных видов топлив на основе коллоидных систем ведутся в ряде экономически развитых стран мира (США, Япония, Великобритания, Германия и др.). Уже в настоящее время можно привести примеры их успешного промышленного использования.

С целью создания современной технологии получения альтернативного жидкого топлива группа ученых осуществила цикл фундаментальных научных исследований состава и структуры бурого угля и закономерностей их изменения в зависимости от возраста. Был исследован также золь-гель процесс в двойных и тройных системах минеральных и органических веществ. Это позволило выявить условия получения устойчивых эмульсионных топлив, в состав которых входят жидкие углеводороды, модифицирующие добавки, вода и поверхностно-активные вещества.

В процессе исследований было обнаружено новое явление: при определенных условиях взаимодействия с модифицирующими добавками бурый уголь из твердого агрегатного состояния переходит в жидкое при комнатной температуре и атмосферном давлении. Были установлены и граничные условия фазовых переходов.

Это открытие позволило создать современную технологию получения эмульсионного топлива для энергетических установок.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: