В настоящее время ускорение технического прогресса невозможно без совершенствования средств связи, систем сбора, передачи и обработки информации. В вопросах развития сетей связи во всех странах большое внимание уделяется развитию систем передачи и распределения (коммутации) информации.
Наиболее широкое распространение в последнее время получили многоканальные телекоммуникационные системы (ТКС) передачи с импульсно-кодовой модуляцией (ИКМ), работающие по волоконно-оптическим кабелям (ОК).
В настоящее время волоконно-оптическая связь широко применяется не только для организации телефонной связи, но и для кабельного телевидения, видеотелефонии, радиовещания, передачи данных и т.д.
Дальнейшему развитию методов и аппаратуры волоконно-оптических систем передачи (ВОСП) способствуют уникальные свойства волоконно-оптических линий связи (ВОЛС):
- малые затухание и дисперсия оптических волокон (ОВ);
- гибкость в реализации требуемой полосы пропускания;
- широкополосность;
- малые габаритные размеры и масса ОВ и ОК;
- невосприимчивость к внешним электромагнитным полям;
- отсутствие искрения при обрывах, коротком замыкании и ненадёжных контактах;
- допустимость изгиба световода под малым радиусом;
- низкая стоимость материала световода;
- возможность использования ОК, не обладающих электропроводностью и индуктивностью;
- высокая скрытность связи;
- высокая прозрачность ОВ;
- возможность постоянного усовершенствования системы связи по мере появления источников с улучшенными характеристиками.
Имеется определённый парк ВОСП плезиохронной цифровой иерархии (ПЦИ, англ. PDH) который непрерывно пополняется и совершенствуется. Так, отечественная промышленность серийно выпускала или выпускает системы передачи ИКМ-30-С5 для сельской связи; ИКМ-30-5, Соната-1, Соната-2, ИКМ-120-4/5, ИКМ-480-5 (Сопка-Г) для городской связи; Сопка-2, Сопка-3, Сопка-3М для внутризоновой связи; Сопка-4, Сопка-4М, Сопка-5, Сопка-5М для магистральной связи.
Кроме того, отечественными и зарубежными фирмами разработана и продолжает разрабатываться широкая номенклатура волоконных световодов и оптических кабелей для ВОСП различных предназначений и структур. Для широкополосных систем дальней связи, в частности магистральных, изготавливаются кабели с одномодовыми волокнами, т.е. волокнами, в которых распространяется лишь основной тип колебаний. Здесь одновременно предъявляются и наиболее высокие требования по снижению затухания и дисперсионных искажений. Изготавливаются волокна, обеспечивающие сохранение поляризации в распространяющемся оптическом излучении.
Такие кабели, предназначенные для магистральной связи, весьма сложны в изготовлении и относительно дороги. Кроме того, их использование предусматривает сочетание с лазерными передающими оптическими модуляторами (ПОМ), к которым также предъявляются повышенные требования в отношении спектральной чистоты излучения, высокой стабильности всех характеристик излучения и т.д. Например, АО «Самарская оптическая кабельная компания» для использования на Взаимоувязанной сети связи (ВСС) производит оптические кабели ОКЛ, кабели ОКГТ-4, встраиваемые в грозозащитный трос и самонесущие кабели ОКС-26. В них используется оптические волокна фирмы Corning – крупнейшего производителя ОВ в мире.
В последнее время на ВСС широко внедряются ТКС синхронной цифровой иерархии (СЦИ, англ. SDH), работающих также по ВОЛС.
SDH – это набор цифровых структур, стандартизированных с целью транспортирования нужным образом адаптированной нагрузки по физическим цепям. В SDH реализуется комплексный процесс перемещения информации, включающей в себя не только передачу сигналов, но и глубокую автоматизацию функций контроля, управления и обслуживания (ОАМ – Operation, Administration and Manaqement).
SDH разработана с учетом недостатков РDH и по сравнению с последней имеет следующие преимущества:
1. Возможность передачи широкополосных сигналов, предполагаемых в будущем.
2. Синхронизация сети и синхронная техника мультиплексирования.
3. Использование синхронной схемы передачи с побайтным мультиплексированием.
4. Временное выравнивание за счет побайтового двухстороннего стаффинга.
5. При мультиплексировании осуществляется синхронизация под входные сигналы.
6. Возможность плезиохронной работы при необходимости. В этом случае стаффинг осуществляется за счет двустороннего побитового выравнивания.
7. SDH удачно сочетается с действующими системами РDH и позволяет существенно улучшить управляемость и эффективность этих сетей.
8. Мультиплексирование с использованием техники указателей (пойнтеров). Фазовые соотношения между циклом SТМ и полезной нагрузкой записывается с помощью указателей. Таким образом, доступ к определенному каналу возможен за счет использования указателя.
9. Сокращение потребности в аппаратуре вследствие эффективности ввода/вывода потоков без разуплотнения группового сигнала. Это позволяет выделять сигналы только требуемых каналов для взаимодействия между системами и при реализации ответвлений. При этом требуется меньше оборудования, снижается потребление энергии, уменьшается занимаемая площадь, снижаются затраты на эксплуатацию.
10. Создается возможность ввода/вывода компонентных сигналов на любом пункте.
11. Встроенная система оперативного переключения сокращает потребности в аппаратуре, улучшает производительность и надежность сети, позволяет выполнять кросс- коммутацию потоков на различных уровнях согласно планируемой конфигурации сети, а также ускоряет процедуры восстановления сети в аварийных ситуациях.
12. SDH обеспечивает надежную трассу передачи системой указателей, которая способствует безупречной работе даже в случае, когда узлы несинхронизированы. Для стыковки сигналов РDH применяется юстификация по битам. Все это вместе гарантирует исключительно низкий коэффициент ошибок по битам.
13. Кольцевые сети SDH обеспечивают экономичное резервирование маршрута и оборудования без сложных схем резервирования сети.
14. Высокая надежность и самовосстанавливаемость сети с использованием резервирования и автоматического переключения в обход поврежденного участка за счет полного мониторинга сети и использования кольцевых топологий.
15. Простота перехода с одного уровня SDH на другой. Структура мультиплексированного сигнала SТМ – N идентична структуре сигнала SТМ-1. Скорости транспортировки сигналов SТМ – N определяются умножением базовой скорости 155,52 Мбит/с на N, поэтому при мультиплексировании не требуется формирования нового цикла.
16. Гибкая структура цикла предоставляет возможность для наращивания пропускной способности системы.
17. Прозрачность сети SDH для передачи любого трафика, обусловленная использованием виртуальных контейнеров.
18. Возможность прямого преобразования электрического сигнала в оптический без сложного линейного кодирования. Управление за счет контроля количества ошибок на различных участках передачи информации. Традиционное оконечное линейное оборудование становится не нужным, оно объединяется с аппаратурой мультиплексирования для повышения эффективности.
19. Единый всемирный стандарт для производителей оборудования, высокий уровень стандартизации SDH технологий и стандартизованный линейный код NRZ обеспечивают совместимость мультиплексного и линейного оборудования разных фирм – изготовителей.
20. Нет необходимости в отдельной сети управления, так как сигнал SТМ содержит стандартные сигналы контроля и управления. Управление сетью можно сосредоточить в одном узле.
21. Предоставление услуг по требованию, обеспечиваемое гибкими элементами сети и эффективным управлением сетью.
22. Сокращение издержек технической эксплуатации (ТЭ) и технического обслуживания (ТО) вследствие широких возможностей сетевого управления в системах SDH. Управление функциями передачи, резервирования, оперативного переключения, ввода/вывода и контроля на каждой станции и во всей транспортной системе осуществляется программно и дистанционно по каналам, встроенным в цикл STM, полная автоматизация процессов эксплуатации сети SDH, радикально повышает её гибкость и надежность, а также качество связи.
Наличие служебных битов в составе передаваемых структур позволяет:
- контролировать их прохождение по сети и обеспечивать качество услуги “абонент-абонент”;
- контролировать состояние элементов сети;
- организовать управление сетью (реконструкция, самовосстановление при авариях), что создает предпосылки для достижения её высокой надежности и живучести.
Таким образом, на сетях связи всех уровней на ВОЛС некоторое время будут совместно находиться на эксплуатации ВОСП РDH и SDH. Такое положение сохранится до полного вытеснения систем РDH системами SDH. Поэтому на данном этапе развития ВСС весьма важным является умение проектировать цифровые оптические линии передачи и оценивать качество их функционирования. В учебном пособии ставится задача помочь студентам в освоении указанных методик.