По классам аминоацил-тРНК-синтетаз

Класс I: валин, изолейцин, лейцин, цистеин, метионин, глутамат, глутамин, аргинин, тирозин,

Класс II: глицин, аланин, пролин, серин, треонин, аспартат, аспарагин, гистидин, фенилаланин

Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.

По путям биосинтеза

Семейство аспартата: аспартат, аспарагин, треонин, изолейцин, метионин, лизин.

Семейство глутамата: глутамат, глутамин, аргинин, пролин.

Семейство пирувата: аланин, валин, лейцин.

Семейство серина: серин, цистеин, глицин.

Семейство пентоз: гистидин, фенилаланин, тирозин, триптофан.

Фенилаланин, тирозин, триптофан иногда выделяют в семейство шикимата.

Физические свойства По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений. Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной. α-аминокислоты являютсяамфотерными электролитами. Общие химические свойства

Все аминокислоты — амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы —COOH, так и основные свойства, обусловленные аминогруппой —NH2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH2 —CH2 —COOH + HCl → HCl • NH2 —CH2 —COOH (хлороводородная соль глицина)

NH2 —CH2 —COOH + NaOH → H2O + NH2 —CH2 —COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, то есть находятся в состоянии внутренних солей.

NH2 —CH2COOH ↔ N+H3 —CH2COO-

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

NH2 —CH2 —COOH + CH3OH → H2O + NH2 —CH2 —COOCH3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков,нейлона, капрона.

Реакция образования пептидов:

HOOC —CH2 —NH —H + HOOC —CH2 —NH2 → HOOC —CH2 —NH —CO —CH2 —NH2 + H2O

Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO−. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

В природе существует свыше 150 аминокислот, но только около 20 важнейших аминокислот служат мономерами для построения белковых молекул. Порядок включения аминокислот в белки определеятся генетическим кодом.

Именно об этих 20 аминокислотах и будет идти речь дальше. Их общие свойства известны хорошо и описаны практически в каждом учебнике по биохимии. Однако частные свойства, характерные только для той или иной аминокислоты затрагиваются мало, и именно они будут рассмотрены. Для удобства все данные представлены в виде таблицы.

Таблица.
Название аминокислоты Роль в структуре и свойствах белков Роль в метаболизме (заменимая незаменимая)
Аланин (α- аминопропионовая кислота) Участвует в стабилизации 3-й и 4-й структуры за счёт гидрофобных взаимодействий; участвует в формировании α-спирали Заменимая аминокислота. Играет большую роль в обмене азотистых соединений. Исходное соединение в синтезе каучуков, каратиноидов, углеводов, липидов и др.
Аргинин (α-амино-δ-гуанидинвалери- ановая кислота) Обладает ярко выраженными основными свойствами, что обеспечивает основный характер белков. В белках её содержится довольно много, особенно в гистонах и протаминах клеточный ядер. Способна к образованию ионных и водородный связей, стабилизирую вторичную и третичную структуры белка. Данная аминокислота может синтезироваться в организме человека, однако скорость её синтеза, особенно при активном росте может быть недостаточна, что приводит к необходимости введения её из вне. Т.е. аргинин находится на границе между заменимыми и незаменимыми аминокислотами. Участвует в синтезе мочевины (орнитиновый цикл) и других процессах азотистого обмена.
Аспарагин Амид дикарбоновой кислоты, обладает основными свойствами, что делает белок некислым. Способен к образованию ионных и водородных связей. Заменимая аминокислота. Путём образования аспаргина из аспаргиновой кислоты в организме связывается токсический аммиак. Принимает участие в реакция переаминирования.
Аспарагиновая (аминоянтарная) кислота Из всех природных аминокислот у неё наиболее выражены кислотные свойства, явл. важной составной частью белков. Обеспечивает гидрофильные свойства белков. Способна образовывать ионные и водородные связи. Заменимая аминокислота. Участвует в реакциях переаминирования. Играет важную роль в обмене азотсодержащих веществ. Участвует в образование мочевины, пиримидиновых оснований.
Валин (α-аминовалериановая кислота, α-амино-β-метилмасляная кислота) Входит в состав практически всех белков. Особенно много в альбумина, казеине, белках соединительной ткани. Придает белкам гидрофобные свойства, т.к. содержит углеводородный радикал. Незаменимая аминокислота. Служит одним из исходных веществ при биосинтезе пантотеновой кислоты (витамин В3) и пеницилина.
Гистидин (α-амино-β-имидазолилпропио-новая кислота) Преобладают основные свойства, содержится почти во всех белках. Для многих животных-незаменимая аминокислота. Исходное вещество при биосинтезе гистамина и биологически активных пептидов мышц – карнозина и анзерина.
Глицин (аминоуксусная кислота) Участвует в организации 3-й и 4-й структуры; препятствует α-спирали; формирует изгиб β-цепи Заменимая нейроактивная аминокислота; участвует в синтезе глутатиона, порфирина, креатина гликолевой и гиппуровой кислот, пуриновых оснований.
Глутамин Является постоянной составной частью тканей животных, особенно много в протаминах и гистонах, т.е. обеспечивает основный характер белков. Способен к образованию ионных и водородных связей. Заменимая аминокислота. Играет важную роль в азотистом обмене. Путём образования глутамина из глутаминовой кислоты в организме растений и многих животных обезвреживается токсический аммиак. Участвует в биосинтезе пуриновых оснований.
Глутаминовая (α-аминоглутаровая) кислота Обладает слабокислыми свойствами, придает белкам гидрофильные свойства. Способна к образованию ионных и водородных связей. Заменимая аминокислота. Играет важную роль в азотистом обмене (перенос аминогрупп, связывание токсического для организма аммиака).
Изолейцин (α-амино-β-метилвалериановая кислота) Придает белкам гидрофобные свойства благодаря наличию углеводородного радикала. Установлено, что N-концевой изолейцин в молекуле α-химотрепсина участвует в осуществлении каталитического акта. Незаменимая аминокислота При брожении может служить источником сивушных масел.
Лейцин (α-аминоизокапроновая кислота) В организмах – в состав всех белков. Придает белкам гидрофобные свойства благодаря наличию углеводородного радикала. Незаменимая аминокислота. При брожении может служить источником сивушных масел.
Лизин Выраженные основные свойства, что обуславливает основный характер белка. Способен к образованию ионных и водородных связей. Незаменимая аминокислота.
Метионин (α-амино-γ-метилтиомасляная кислота) Остаток метионина в молекулах белков, по-видимому, не играет существенной функциональной роли, содержание его в белках, как правило не велико. Однако метионин занимает ключевое положение на начальных этапах биосинтеза белка, образуя специфические комплексы с т-РНК и являясь инициатором синтеза полипептидной цепи. Незаменимая аминокислота. Служит в организме донором метильных групп при биосинтезе холина, адреналина и многих других биологически важных веществ, а также источником серы при биосинтезе цистеина.
     
Пролин (пирролидин-2-кардоноваякислота Пролин влияет на характер укладки полипептидной цепи белка при формировании его третичной структуры. Заменимая аминокислота. Является предшественником оксипролина.
Серин (α-амино-β-оксипропионовая кислота) Группа –ОН серина способна участвовать в образовании водородных связей, стабилизируя вторичную и третичную структуры белка. Кроме того остаток серина в полипептидной цепи белка способен вступать в реакции нуклеофильного замещения, приводящие к образованию ковалентного промежуточного соединения. Благодаря этому серин входит в состав активного центра некоторых ферментов. Заменимая аминокислота. Играет важную роль в проявление каталитической активности многих расщепляющих белки ферментов. Входит в состав некоторых сложных липидов.
Тирозин (α-амино-парагидроксифенил- пропионовая кислота) Участвует в образовании водородных связей. В молекуле гемоглобина остаток тирозина в 140 и 145 положении обеспечивает связывание О2. Ковалентная модификация тирозина в структуре белков ведёт к изменению их физиологической активности. Заменимая аминокислота. В организме человека и животных – исходное вещество для синтеза гормонов щитовидной железы, адреналина и др.
Треонин (α-амино-β-оксимасляная кислота) Может участвовать в образовании водородных связей. Оксигруппа треонина служит местом присоединения сахарных колец в гликопротеидах. Незаменимая аминокислота, потребность в которой особенно высока у растущего организма.
Триптофан Способствует образованию α-спирали белка, т.е. формирует его вторичную структуру. Водородный атом у азота пиррольного кольца обладает свойствами образовывать связи с плоскими молекулами, а также с группами, локализованными внутри глобул белков. Незаменимая аминокислота. Используется клетками млекопитающих для синтеза никотиновой кислоты (витамин PP) и серотонина, насекомыми – пигмента глаз. При гнилостных процессах в кишечнике из триптофана образуются скатол и индол.
Фенилаланин (α-амино-β-фенилпропионовая кислота) Принимает участие в формировании вторичной структуры белков. В молекуле гемоглобина фенольное кольцо фенилаланина обеспечивает контакты с плоской структурой гема. Фенольная боковая цепь остатка фенилаланина в ферментах и белковых субстратах участвует в гидрофобных взаимодействиях, обеспечивая образование фермент-субстратного комплекса. Незаменимая аминокислота. Является предшественником тирозина.
Цистеин (α-амино-β-тиопропионовая кислота) Благодаря наличию –SH группы способен образовывать дисульфидные мостики, тем самым стабилизирую вторичную и третичную структуры белков. Цистеин важен для проявления биологической активности многих ферментов, белковых гормонов. В организме легко превращается в цистин.

86). Белки. Структурная организация белков. Физические и химические свойства. Белки́ (протеи́ны, полипепти́ды) — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например,фотосинтетический комплекс. Физико-химические свойства Амфотерность Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппа лизина иамидиновый остаток CNH(NH2) аргинина, в несколько меньшей степени — имидазольный остаток гистидина). Каждый белок характеризуетсяизоэлектрической точкой (pI) — кислотностью среды (pH), при которой суммарный электрический заряд молекул данного белка равен нулю и, соответственно, они не перемещаются в электрическом поле (например, при электрофорезе). В изоэлектрической точке гидратация и растворимость белка минимальны. Величина pI зависит от соотношения кислых и основных аминокислотных остатков в белке: у белков, содержащих много кислых аминокислотных остатков, изоэлектрические точки лежат в кислой области (такие белки называют кислыми), а у белков, содержащих больше основных остатков, — в щелочной (основные белки). Значение pI данного белка также может меняться в зависимости от ионной силы и типа буферного раствора, в котором он находится, так как нейтральные соли влияют на степень ионизации химических группировок белка. pI белка можно определить, например, изкривой титрования или с помощью изоэлектрофокусирования. В целом, pI белка зависит от выполняемой им функции: изоэлектрическая точка большинства белков тканей позвоночных лежит в пределах от 5,5 до 7,0, однако в некоторых случаях значения лежат в экстремальных областях: так, например, для пепсина — протеолитического фермента сильнокислого желудочного сока pI ~ 1[19], а для сальмина — белка-протамина молок лосося, особенностью которого является высокое содержание аргинина, — pI ~ 12. Белки, связывающиеся с нуклеиновыми кислотами за счёт электростатического взаимодействия с фосфатными группами, часто являются основными белками. Примером таких белков служат гистоны и протамины. Растворимость Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) ифиброин, который входит в состав шёлка и паутины[20]. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора. Белки также делятся на гидрофильные и гидрофобные (водооталкивающие). К гидрофильным относится большинство белков цитоплазмы, ядра имежклеточного вещества, в том числе нерастворимые кератин и фиброин. К гидрофобным относится большинство белков, входящих в составбиологических мембран, — интегральных мембранных белков, которые взаимодействуют с гидрофобными липидами мембраны (у этих белков, как правило, есть и гидрофильные участки). ДенатурацияНеобратимая денатурация белка куриного яйца под воздействием высокой температуры Денатурацией белка называют любые изменения в его биологической активности и/или физико-химических свойствах, связанные с потерей четвертичной, третичной или вторичной структуры (см. раздел «Структура белка»). Как правило, белки достаточно стабильны в тех условиях (температура, pH и др.), в которых они в норме функционируют в организме. Резкое изменение этих условий приводит к денатурации белка. В зависимости от природы денатурирующего агента выделяют механическую (сильное перемешивание или встряхивание), физическую (нагревание, охлаждение, облучение, обработка ультразвуком) и химическую (кислоты и щёлочи, поверхностно-активные вещества, мочевина) денатурацию. Денатурация белка может быть полной или частичной, обратимой или необратимой. Самый известный случай необратимой денатурации белка в быту — это приготовление куриного яйца, когда под воздействием высокой температуры растворимый в воде прозрачный белок овальбумин становится плотным, нерастворимым и непрозрачным. Денатурация в некоторых случаях обратима, как в случае осаждения водорастворимых белков с помощью солей аммония, и используется как способ их очистки. Структура Схематическое изображение образования пептидной связи (справа). Подобная реакция происходит в молекулярной машине, синтезирующей белок, — рибосоме Молекулы белков представляют собой линейные полимеры, состоящие из остатков α-L-аминокислот (которые являются мономерами), также в состав белков могут входить модифицированные аминокислотные остатки и компоненты неаминокислотной природы. Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения. Хотя на первый взгляд может показаться, что использование в большинстве белков «всего» 20 видов аминокислот ограничивает разнообразие белковых структур, на самом деле количество вариантов трудно переоценить: для цепочки из 5 аминокислотных остатков оно составляет уже более 3 миллионов, а цепочка из 100 аминокислотных остатков (небольшой белок) может быть представлена более чем в 10130 вариантах. Белки длиной от 2 до нескольких десятков аминокислотных остатков часто называют пептидами, при большей степени полимеризации —белками, хотя это деление весьма условно. При образовании белка в результате взаимодействия α-карбоксильной группы (-COOH) одной аминокислоты с α-аминогруппой (-NH2) другой аминокислоты образуются пептидные связи. Концы белка называют N- и C-концом, в зависимости от того, какая из групп концевого аминокислотного остатка свободна: -NH2 или -COOH, соответственно. При синтезе белка на рибосоме первым (N-концевым) аминокислотным остатком обычно является остаток метионина, а последующие остатки присоединяются к C-концу предыдущего. Уровни организации Уровни структурной организации белков: 1 — первичная, 2 — вторичная, 3 — третичная, 4 — четвертичная

Первичная структура Пример выравнивания аминокислотных последовательностей белков (гемоглобинов) из разных организмов Первичная структура — последовательность аминокислотных остатков в полипептидной цепи. Первичную структуру белка, как правило, описывают, используя однобуквенные или трёхбуквенные обозначения для аминокислотных остатков. Важными особенностями первичной структуры являютсяконсервативные мотивы — устойчивые сочетания аминокислотных остатков, выполняющие определённую функцию и встречающиеся во многих белках. Консервативные мотивы сохраняются в процессеэволюции видов, по ним часто удаётся предсказать функцию неизвестного белка[24]. По степени гомологии (сходства) аминокислотных последовательностей белков разных организмов можно оценивать эволюционное расстояние междутаксонами, к которым принадлежат эти организмы. Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями. Ниже приведены самые распространённые типы вторичной структуры белков: α-спирали — плотные витки вокруг длинной оси молекулы, один виток составляют 3,6 аминокислотных остатка, и шаг спирали составляет 0,54 нм[25] (на один аминокислотный остаток приходится 0,15 нм), спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Хотя α-спираль может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина. Расположенные близко друг к другу остатки аспарагина,серина, треонина и лейцина могут стерически мешать образованию спирали, остатки пролина вызывают изгиб цепи и тоже нарушают α-спирали; β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0,34 нм на аминокислотный остаток) в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали. Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация). Для образования β-листов важны небольшие размеры боковых групп аминокислот, преобладают обычно глицин и аланин;

Третичная структура. Третичная структура — пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которыхгидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие: ковалентные связи (между двумя остатками цистеина — дисульфидные мостики); ионные связи между противоположно заряженными боковыми группами аминокислотных остатков; водородные связи; гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула сворачивается так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы. Четвертичная структура Четвертичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: