double arrow

Билет 6.2

Звуковые волны и скорость их распространения. Высота и тембр звука.

Звук — физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. В узком смысле под звуком имеют в виду эти колебания, рассматриваемые в связи с тем, как они воспринимаются органами чувств животных и человека.

Упругие волны (звуковые волны) — волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил.

Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычный человек способен слышать звуковые колебания в диапазоне частот от 16—20 Гц до 15—20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, — ультразвуком, от 1 ГГц — гиперзвуком. Громкость звука сложным образом зависит от эффективного звукового давления, частоты и формы колебаний, а высота звука — не только от частоты, но и от величины звукового давления.

Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением.

Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

Звуково́е давле́ние — переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны.

Мгновенное значение звукового давления в точке среды изменяется как со временем, так и при переходе к другим точкам среды, поэтому практический интерес представляет среднеквадратичное значение данной величины, связанное с интенсивностью звука:

где — интенсивность звука, — звуковое давление, — удельное акустическое сопротивление среды, — усреднение по времени.

Удельное акустическое сопротивление упругой среды — величина, равная отношению амплитуды звукового давления в среде к колебательной скорости её частиц при прохождении через среду звуковой волны:

Единица измерения — паскаль-секунда на метр (Па•с/м). Удельное акустическое сопротивление можно рассчитать через плотность среды ρ и скорость звука c в ней:

ZS = ρc

Скорость звука — скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях — меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества, в монокристаллах — от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды

Док-во?

Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

где — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных; — постоянная Больцмана; —универсальная газовая постоянная; — абсолютная температура в кельвинах; — температура в градусах Цельсия; — молекулярная масса; —молярная масса, . По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул и в приближении постоянства показателя адиабаты пропорциональна квадратному корню из абсолютной температуры.

Данные выражения являются приближенными, поскольку основываются на уравнениях, описывающих поведение идеального газа.

Высота звука — свойство звука, определяемое человеком на слух и зависящее в основном от его частоты, т. е. от числа колебаний среды (обычно воздуха) в секунду, которые воздействуют на барабанную перепонку. С увеличением частоты колебаний растёт высота звука. В первом приближении субъективная высота звука пропорциональна логарифму частоты — согласно закону Вебера-Фехнера.

Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности раздражителя.

В ряде экспериментов, начиная с 1834 года, Э. Вебер показал, что новый раздражитель, чтобы отличаться по ощущениям от предыдущего, должен отличаться от исходного на величину, пропорциональную исходному раздражителю. Так, чтобы два предмета воспринимались как различные по весу, их вес должен различаться на 1/30, а не на x грамм. Для различения двух источников света по яркости необходимо, чтобы их яркость отличалась на 1/100, а не на x люмен и т. д.

На основе этих наблюдений Г. Фехнер в 1860 году сформулировал «основной психофизический закон», согласно которому сила ощущения пропорциональна логарифму интенсивности раздражителя :

где — значение интенсивности раздражителя. — нижнее граничное значение интенсивности раздражителя: если , раздражитель совсем не ощущается. - константа, зависящая от субъекта ощущения.

Мел — психофизическая единица высоты звука, применяется главным образом в музыкальной акустике. Количественная оценка звука по высоте основана на статистической обработке большого числа данных о субъективном восприятии высоты звуковых тонов. Результаты исследований показывают, что высота звука связана главным образом с частотой колебаний, но зависит также от уровня громкости звука и его тембра. Звуковые колебания частотой 1000 Гц при эффективном звуковом давлении 2·10−3 Па (то есть при уровне громкости 40 фон), воздействующие спереди на наблюдателя с нормальным слухом, вызывают у него восприятие высоты звука, оцениваемое по определению в 1000 мел. Звук частоты 20 Гц при уровне громкости 40 фон обладает по определению нулевой высотой (0 мел). Зависимость нелинейна, особенно при низких частотах (для «низких» звуков).

· Преобразовать значение частоты звука (Гц) в значение высоты (мел) можно по формуле:

· Обратное преобразование:

Те́мбр — колористическая (обертоновая) окраска звука.

Обертоны в акустике — призвуки, входящие в спектр музыкального звука; высота обертонов выше основного тона (отсюда название). Наличие обертонов обусловлено сложной картиной колебаний звучащего тела (струны, столба воздуха, мембраны, голосовых связок и т. д.): частоты обертонов соответствуют частотам колебания его частей.

Обертоны бывают гармоническими и негармоническими. Частоты гармонических обертонов кратны частоте основного тона (гармонические обертоны вместе с основным тоном также называются гармониками); в реальных физических ситуациях (например, при колебаниях массивной и жесткой струны) частоты обертонов могут заметно отклоняться от величин, кратных частоте основного тона — такие обертоны называются негармоническими.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: