(a + b)n = 
Для доказательства формулы можно рассмотреть выражение (a + b) ∙ (a + b) ∙… ∙ (a + b). Подсчитаем, сколько раз в этом выражении встретится bk.
Это выражение встретится столько раз, сколько способов выбрать k скобок, из которых возьмём b, среди всех n скобок. А это количество способов равно
.
Из оставшихся (n-k) скобок выберем (n-k) множителей a. Таким образом, получим слагаемое
. Так сделаем для k от 0 до n.
Свойства биномиальных коэффициентов

Доказательство.
Подставим в бином Ньютона a = b = 1.

Доказательство.
Подставим в бином Ньютона a = 1, b = -1.






