Большое число разнообразных экономических ситуаций может быть смоделировано с помощью транспортной задачи.
Модель в общем виде
Требуется перевезти с наименьшими затратами однородную продукцию от n поставщиков к m потребителям.
Заданы объемы запасов продукции у каждого из поставщиков ai, , и объемы потребностей у каждого из потребителей bj, .
Затраты на перевозку единицы продукции от i-го поставщика к j-му потребителю равны cij; , .
Составить план перевозок.
| Пример Компания производит коммерческие холодильные установки на трех основных производствах (n = 3) – в Стокгольме, Триесте и Руане – соответственно по 120, 40 и 90 шт. (a1 = 120, a2 = 40, a3 = 90). Основными центрами сбыта являются Лейпциг и Лион (m = 2), которые нуждаются в поставках соответственно 150 и 90 установок (b1 = 150, b2 = 90). Перевозка одной установки в эти города из Стокгольма обходится соответственно в 25 и 14, из Триеста – в 18 и 8, и из Руана – в 12 и 6 ф.ст. (c11 = 25, c12 = 14, …, c32 = 6). Составить наиболее дешевый план перевозок. |
Введем переменные хij –
- количество продукции, перевозимой от i-го поставщика к j-му потребителю; , .
Тогда cijхij - затраты на перевозку продукции от i-го поставщика к j-му потребителю. Просуммировав их по всем i и j, получим общие затраты, которые необходимо минимизировать:
min
От i-го поставщика к различным потребителям вывозится продукции. При этом нельзя увезти большее количество продукции, чем имеется у него в запасе, и это должно выполняться для всех n поставщиков ( ):
К j-му потребителю привозят продукции, и эта сумма должна быть не меньше его потребностей (для любого потребителя ):
По смыслу задачи .
| - число установок, перевозимых из i-го центра производства в j-й центр сбыта; , .
Тогда в 25х11 ф.ст. обходятся перевозки из Стокгольма в Лейпциг, в 14х12 ф.ст. - из Стокгольма в Лион и т.д. Минимизируем все затраты на перевозку:
min (25x11 + 14x12 + 18x21 +
8x22 + 12x31 + 6x32)
В два центра сбыта из Стокгольма будет вывезено x11 + x12 установок. Эта сумма не может превысить 120, т.е. числа установок, производимых в Стокгольме:
x11 + x12 120
Аналогичные условия должны выполняться для Триеста и Руана:
x21 + x22 40
x31 + x32 90
Из трех центров производства в Лейпциг поставляют x11 + x21+ x31 установок. Так как Лейпцигу необходимо по крайней мере 150 установок,
x11 + x21+ x31 150
Аналогично для Лиона
x12 + x22+ x32 90
По смыслу задачи , так как количество установок не может быть отрицательным или дробным.
|
Итак, модель транспортной задачи в общем виде строится следующим образом:

|
Построенная модель является задачей линейного программирования, включающей m+n ограничений на m*n неотрицательных переменных.
Для рассмотренного примера – задачи о холодильных установках – транспортная модель примет вид:
min (25x11 + 14x12 + 18x21 + 8x22 + 12x31 + 6x32)
x11 + x12
120
x21 + x22
40
x31 + x32
90
x11 + x21+ x31
150
x12 + x22+ x32
90

Построенная задача линейного программирования включает 5 = 3 + 2 ограничений на 6 = 3 * 2 неотрицательных переменных.
Отметим, что перевозка продукции - не единственная экономическая ситуация, которая может быть смоделирована с помощью такой задачи. Транспортные задачи имеют более широкую область применения и представляют собой отдельный класс задач линейного программирования, для которого разработаны специальные методы решения. Конечно, ее можно решить и симплекс-методом, но в связи с большой размерностью (особенно с большим числом переменных) это бывает невыгодно. В самом деле, в симплексной таблице будет храниться более чем m*n*(m+n) значений (даже если размерность задачи всего 5 х 5, то это 10 ограничений на 25 основных переменных).
Пример использования транспортной модели в экономической ситуации, не связанной с перевозками, будет рассмотрен далее.
, и объемы потребностей у каждого из потребителей bj,
.
Затраты на перевозку единицы продукции от i-го поставщика к j-му потребителю равны cij;
,
От i-го поставщика к различным потребителям вывозится
продукции. При этом нельзя увезти большее количество продукции, чем имеется у него в запасе, и это должно выполняться для всех n поставщиков (
):
К j-му потребителю привозят
продукции, и эта сумма должна быть не меньше его потребностей (для любого потребителя
):
По смыслу задачи
.
,
.
Тогда в 25х11 ф.ст. обходятся перевозки из Стокгольма в Лейпциг, в 14х12 ф.ст. - из Стокгольма в Лион и т.д. Минимизируем все затраты на перевозку:
min (25x11 + 14x12 + 18x21 +
8x22 + 12x31 + 6x32)
В два центра сбыта из Стокгольма будет вывезено x11 + x12 установок. Эта сумма не может превысить 120, т.е. числа установок, производимых в Стокгольме:
x11 + x12
120
Аналогичные условия должны выполняться для Триеста и Руана:
x21 + x22
150
Аналогично для Лиона
x12 + x22+ x32
, так как количество установок не может быть отрицательным или дробным.






