Тонкое полукольцо радиусом R равномерно заряжено с линейной плотностью + t и находится в вакууме. Определить силу взаимодействия полукольца с точечным зарядом + q0, находящимся в центре кривизны.
| Дано: R + t + q0 | Решение: Выделим элемент кольца dl, на котором находится заряд dq = tdl. Этот заряд является точечным, поэтому модуль силы взаимодействия зарядов dq и q0 находится по закону Кулона: . |
-? |
Разложим силу
на составляющие
и
(рис.8). Поскольку полукольцо заряжено равномерно, то в силу симметрии сумма всех составляющих
. Остаются только составляющие сил, пер-
| пендикулярные диаметру полукольца. Поэтому опера- цию геометрического сложе- ния всех элементарных сил заменяем сложением их перпендикулярных составля- ющих, т.е. интегрированием. Составляющая является величиной переменной, она зависит от угла a . |
Поэтому интегрирование ведется по углу a в пределах от нуля до π.

Элемент дуги окружности dl = R× da, тогда
=
.
.
-?
заменяем сложением их перпендикулярных составля- ющих, т.е. интегрированием. Составляющая
является величиной переменной, она зависит от угла a
. 





