Иммунология злокачественных новообразований

Попытки иммунизации против рака неоднократно предпринимались со времен Эрлиха, однако незнание законов трансплантации тканей до начала 1950-х гг. обесценивало эти попытки. Более успешными были начальные исследования по антигенной специфичности опухолевых антигенов, проводимые в 1930-е гг. в Польше и Германии, но они были прерваны второй мировой войной.

Начало современному этапу в иммунологии рака было положено работами I.Gross середины 1940-х гг., получившего иммунный ответ по отношению к канцерогенной саркоме мышей, индуцированной в сингенной системе, а также Л.А. Зильбера у нас в стране и T.Gorer в Англии, обнаруживших в опухолях антигены, отсутствующие в гомологичных нормальных тканях (конец 40-х – начало 50-х гг.),то есть опухолеспецифические антигены (ОСА). Значительную роль сыграли исследования группы G. Klein в 1961г., впервые показавшие эффективный иммунный ответ против опухолей, вызванных вирусами полиомы и SV40, у животных, иммунизированных этими вирусами. Эти исследования дали мощный начальный стимул для современного этапа иммунологии рака. Давняя уверенность в существовании иммунной защиты против злокачественного опухолевого роста первоначально основывалась на представлениях об опухолях как о чужеродном для организма новообразовании, источнике биологической агрессии изнутри.

В конце 60-х гг. P.Burnet сформулировал концепцию иммунологического надзора организма над возникновением опухолей. Созданию этой концепции предшествовали два важных обстоятельства: выяснение роли Т-лимфоцитов в реакциях трансплантационного иммунитета и обнаружение специфических трансплантационных опухолевых антигенов (СТОА) во многих типах экспериментальных опухолей.

P.Burnet высказал предположение о том, что в организме постоянно появляются мутантные клетки, обладающие потенциями опухолевого роста. Однако, подавляющее большинство из них распознается как чужое и элиминируется еще до формирования опухоли. Распознавание таких клеток осуществляется Т-лимфоцитами и обусловлено антигенными отличиями опухолевых клеток от нормальных клеток хозяина. Из концепции следовало, что рост антигенно чужеродных опухолей должен приводить к развитию специфического Т-клеточного противоопухолевого иммунного ответа, а иммуносупрессия (например, с помощью тимэктомии) должна была бы приводить к увеличению частоты возникновения опухолей.

Однако в дальнейшем оказалось, что частота возникновения спонтанных опухолей у бестимусных мышей примерно также низка, как и у мышей тех же линий с нормально функционирующим тимусом. Кроме того, у пациентов, подвергавшихся иммуносупрессии, не возникали опухоли, относящиеся к наиболее распространенным у человека нозологическим формам рака (рак легкого, желудка и толстого кишечника, молочной железы). Постепенно стало ясно, что Т-клеточная система иммунитета крайне важна для защиты против вирус-индуцированных опухолей и опухолей, содержащих специфические опухолевые антигены (СОА). Однако, её роль в контроле возникновения и роста спонтанных опухолей животных не получила подтверждения (теория G.Klein), как не получила подтверждения гипотеза о стимулирующем рост опухоли действии Т-лимфоцитов (теория Р.Prehn,1972 г.).Постулаты противоопухолевого иммунитета тогда были разработаны с учетом достижений инфекционной и трансплантационной иммунологии, в соответствии с которыми отторжение опухоли рассматривалось исследователями как адекватная реакция иммунной системы, а прогрессирование онкологического заболевания – как проявление иммунодефицита. В настоящее время трактовка опухолевой прогрессии как следствия иммунодефицита представляется упрощенной.

Если при генерализации онкологического заболевания дисфункция иммунитета действительно имеет место, то на более ранних стадиях роста опухоли иммунная система организма-хозяина сохраняет свою компетентность.

Факты свидетельствуют о том, что иммунная система часто не только не отторгает растущую опухоль, но и активно помогает опухолевой прогрессии. С другой стороны, раковые клетки в процессе своего развития приобретают ряд признаков, характерных в норме для клеток иммунной системы: способность к избирательной миграции в ткани, адгезивность и инвазивность. На трансформированных клетках экспрессируются рецепторы, свойственные клеткам иммунной системы. Нередко опухолевая прогрессия сопровождается развитием аутоиммунных реакций. Это отмечается при паранеопластических артритах, синдроме Шегрена, дерматомиозите и системной склеродермии.

Все вышеназванное служит основанием для коррекции наших представлений о взаимодействии между опухолью и иммунной системой. Это взаимодействие не всегда является абсолютным антагонизмом.

Генетически лабильная злокачественная опухолевая клетка в процессе опухолевой прогрессии также развивает различные механизмы защиты и отбирается в организме по признакам, позволяющим ей выжить in vivo во враждебном клеточном окружении.

Janeway C.A. и Trovers P. показали, что варианты опухолевых клеток отбираются в организме прежде всего по множеству связанных с выживаемостью in vivo свойств,в том числе, по важнейшему свойству опухолевых клеток – их собственной иммунодепрессивной способности. Она осуществляется путем защиты самой себя от эффекторных механизмов системы врожденного иммунитета хозяина, распознающих чужое с помощью макрофагов, нейтрофилов и натуральных киллеров (NK), путем секреции факторов, которые подавляют иммунный ответ. Такие опухолевые клетки не экспрессируют антигены тканевой совместимости МНС 1 класса, необходимые для распознавания их цитотоксическими CD8 + Т-лимфоцитами. Известный феномен «ускользания» («escape») состоит в постоянной мутации опухолевых антигенов, когда в результате отбора сохраняются только те опухолевые клетки, которые способны меняться постоянно и с большой скоростью. Кроме того, J.Bradley и J.McClaskey, к феномену «ускользания» относят:

- маскировку опухолевых антигенов избытком антител или иммунных комплексов,

-снижение или полную блокаду рецепторов Т киллеров антителами к противоопухолевым антигенам,

-снижение «уровня презентации» опухолевых антигенов макрофагами, приводящее к угнетению продукции противоопухолевых цитокинов (ФНО, интерфероны и т.д.) макрофагами.

Еще в 50-е годы был описан феномен усиления опухолевого роста («enhancing»), который состоит в защите антителами хозяина опухолевых клеток от действия иммунных Т-лимфоцитов. В результате такого отбора выжившие варианты опухолевых клеток, как правило, более резистентны к цитотоксическому действию активированных макрофагов, NK-клеток и Т-лимфоцитов. Опухолевые клетки приобретают селективные преимущества in vivo, развивая и используя для своей защиты против этих эффектов вполне адекватные и специфические механизмы (например, усиленный катаболизм перекиси водорода в ответ на его продукцию активированными макрофагами и нейтрофилами, а также выброс иммуносупрессора ПГЕ2 при контакте с NK-клетками и макрофагами).

Кроме того, в последние годы показано, что опухолевые клетки могут продуцировать специальные ганглиозиды GM1,GM2, GM3 и GD3,способные блокировать сигнал проведения от ИЛ-2 и Ил-4 на Т клетках. Экзогенные ганглиозиды действуют на лимфоциты двумя способами: как сорбируясь на поверхности клеток, так и встраиваясь в клеточную мембрану. При этом супрессия цитотоксического звена иммунитета при развитии опухолевого процесса может развиваться как в результате перехвата опухолевыми ганглиозидами цитокинов (и, тем самым, уменьшения их эффективной концентрации), так и путем прямой индукции смерти цитотоксических Т-лимфоцитов(9).

Одним из механизмов самозащиты опухолей является выраженная тканевая гипоксия внутри солидной опухоли.Это приводит к значительному накоплению аденозина и ингибиции цитотоксичности Т лимфоцитов через А2А аденозиновый рецептор.

Приведенные примеры не исчерпывают все возможности опухолевых клеток для защиты против эффекторных систем организма и для выживания in vivo, но позволяют лучше понять, в чем состоят биологические отличия злокачественной опухолевой клетки от трансформированной. В процессе отбора и прогрессии in vivo, трансформированные клетки перестают быть пассивными мишенями для эффекторов систем защиты организма и отбираются in vivo, в том числе и, по-видимому, в первую очередь, по способности к активной локальной защите. Приобретенная опухолевыми клетками в процессе такого отбора резистентность к эффекторам естественного противоопухолевого иммунитета определяет их лучшую выживаемость in vivo и соответственно более высокий уровень туморогенности.

Высказывается также предположение, что рак – скорее результат хромосомных нарушений, чем горстки генных мутаций. Однако именно мутационная теория является сегодня доминирующей. Эта идея привела его к предположению, что раковые опухоли фактически обладают новыми хромосомными кариотипами, что позволяет рассматривать их как самостоятельные виды, близкие к паразитам и кардинально отличающиеся от своего хозяина – организма человека.

Новый взгляд на природу рака может привести к новому пониманию процесса его роста и метастазирования и, возможно, к новым подходам к лечению или новым мишеням для лекарственных препаратов. Кроме того, так как поврежденные хромосомы вновь развившихся опухолей видны под микроскопом, опухоль можно раньше диагностировать. Очень похожая процедура – мазок Папаниколау – используется сегодня при подозрении на рак шейки матки. Диагностика в этом случае основывается на изменениях формы цервикальных клеток как на признаке имеющихся проблем с хромосомами.

Эти данные обнаруживают наличие важной для иммунотерапии опухолей связи (обратной зависимости) между уровнем злокачественности опухолевых клеток и возможностями иммунологического контроля их роста in vivo.

Открытие в 60-70-е гг. цитотоксической активности активированных макрофагов, а позднее естественных киллеров (NK-клеток), идентификация последних как больших и средних гранулярных лимфоцитов, отличающихся от T-лимфоцитов по морфологии и экспрессии некоторых мембранных рецепторов, привлекли внимание многих исследователей к механизмам иммунной защиты организма против опухоли.

К концу 70-х годов возникло представление о том, что весьма существенную (и до настоящего времени недооцененную) роль в защите организма против опухоли играет система врожденного естественного иммунитета.

Таким образом, теперь уже столетняя история попыток создания клеточных, антигенных, вирусных и рекомбинированных вакцин против рака с их, как правило, временным и частичным успехом, равно как и более успешный, почти 50-летний опыт химио- и лучевой терапии новообразований человека свидетельствует о том, что камнем преткновения при этих воздействиях является биология злокачественной опухолевой клетки. Приобретаемая in vivo злокачественными вариантами опухолевых клеток резистентность к макрофагам, NK-клетками и Т-лимфоцитами, а также резистентность к химио- и лучевой терапии во всех случаях имеет разные механизмы, но как явление, обусловленное отбором, имеет общую биологическую природу.

Онкомаркеры.

На протяжении последних десятилетий использование биохимических (клинико-химических по зарубежной терминологии) лабораторных тестов в онкологической практике экспоненциально увеличивалось, и этот рост продолжается в настоящее время. Новые технологические достижения на каждом этапе приводили к замене старых лабораторных методик на более совершенные, более точные и чувствительные. Созданы дополнительные тесты, позволяющие диагностировать физическое присутствие опухоли, системные проявления злокачественного новообразования, паранеопластические синдромы, а также определять маркеры опухолей.

Для ранней диагностики первичной опухоли и ее метастазов, а также мониторинга лучевой и химиотерапии, по мнению большинства онкологов, определение онкомаркеров (веществ белковой природы, присутствующих в биологических жидкостях организма при опухолях) является наиболее приемлемым методом.

Как известно, онкомаркер позволяет дифференцировать злокачественную опухоль от доброкачественной на основе количественных отличий в содержании соответствующего антигена - опухолевого маркёра в сыворотке крови вне зависимости от локализации опухолевого очага. Опухолевая клетка способна выделять 1 пикограмм (10-12 г) онкомаркера в кровь 1 мг антигена, что в пересчете на концентрацию составляет около 200 нг/мл. Методы тестирования, зачастую превосходят по своей чувствительности эту концентрацию. Таким образом, повышенный уровень маркёров обнаруживается уже при малых размерах опухоли.

Многолетний опыт использования этих чувствительных и высокоспецифичных тестов в медицинской практике показал, что внедрение онкомаркеров в практику значительно повышает эффективность работы онколога.

Однако пока не удалось разработать ни одного строго опухолеспецифичного серологического диагностикума, способного детектировать только злокачественную опухоль данного гистологического типа и обнаружить её локализацию на возможно более ранних этапах формирования. В некоторой степени можно повысить эффективность диагностики используя сочетание нескольких онкомаркеров в процессе тестирования.

В крови больного с не онкологической патологией уровень онкомаркеров, как правило, не превышает нормальных значений концентрации. Вместе с тем, при таких патологических состояниях, как воспалительные заболевания печени, поджелудочной железы, легких и т.д. иногда встречается неспецифическое, чаще незначительное, повышение уровня онкомаркеров определенного типа.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: