Вычисление

[ править ] В отсутствие рассеяния

Для вычисления давления света при нормальном падении излучения и отсутствии рассеяния можно воспользоваться следующей формулой:

где — интенсивность падающего излучения; скорость света, коэффициент пропускания, коэффициент отражения.

Давление солнечного света на перпендикулярную свету зеркальную поверхность, находящуюся в космосе в районе Земли, легко рассчитать через плотность потока солнечной (электромагнитной) энергии на расстоянии одной астрономической единицы от Солнца (солнечная постоянная). Оно составляет 4,6 мкН/м² = 4,6·10−11 [ источник не указан 721 день ] атм (см. солнечная постоянная).

Если свет падает под углом к нормали, то давление можно выразить формулой:

где — объёмная плотность энергии излучения, коэффициент пропускания, — коэффициент отражения, единичный вектор в направлении падающего пучка, — единичный вектор в направлении отражённого пучка.

Например, тангенциальная составляющая силы давления света на единичную площадку будет равна:

Нормальная составляющая силы давления света на единичную площадку будет равна:

Отношение нормальной и тангенциальной составляющих равно:

[ править ] При рассеянии

Если рассеяние света поверхностью и при пропускании, и при отражении подчиняется закону Ламберта, то при нормальном падении давление будет равно:

где — интенсивность падающего излучения, — коэффициент диффузного пропускания, альбедо.

[ править ] Вывод

Найдём импульс, уносимый электромагнитной волной от ламбертова источника.

Полная светимость ламбертова источника, как известно, равна:

где сила света в направлении нормали.

Отсюда сила света под произвольным углом к нормали, по закону Ламберта, равна:

.

Энергия, излучаемая в элемент телесного угла, имеющий вид сферического кольца, равна:

Для определения импульса, уносимого излучением, нужно учитывать только его нормальную составляющую, так как в силу поворотной симметрии все тангенциальные составляющие взаимно компенсируются:

Отсюда

Для рассеянного обратно излучения и

Для излучения, прошедшего сквозь пластинку, и (минус возникает из-за того, что это излучение направлено вперёд).

Складывая давление, создаваемое падающим и обоими видами рассеянного излучения, получаем искомое выражение.

В случае, когда отражённое и пропущенное излучение является частично направленным и частично рассеянным, справедлива формула:

где — интенсивность падающего излучения, — коэффициент направленного пропускания, — коэффициент диффузного пропускания, — коэффициент направленного отражения, — альбедо рассеяния.

[ править ] Давление фотонного газа

Изотропный фотонный газ, имеющий плотность энергии u, оказывает давление:

В частности, если фотонный газ является равновесным (излучение абсолютно чёрного тела) с температурой T, то его давление равно:

где σ — постоянная Стефана-Больцмана

[ править ]Физический смысл

Давление электромагнитного излучения является следствием того, что оно, как и любой материальный объект, обладающий энергией E и движущийся со скоростью v, также обладает импульсом p = Ev / c ². А поскольку для электромагнитного излучения v = c, то p = E / c.

В электродинамике давление электромагнитного излучения описывается тензором энергии-импульса электромагнитного поля.

[ править ] Корпускулярное описание

Если рассматривать свет как поток фотонов, то, согласно принципам классической механики, частицы при ударе о тело должны передавать ему импульс, другими словами — оказывать давление.

[ править ] Волновое описание

С точки зрения волновой теории света электромагнитная волна представляет собой изменяющиеся и взаимосвязанные во времени и пространстве колебания электрического и магнитного полей. При падении волны на отражающую поверхность, электрическое поле возбуждает токи в приповерхностном слое, на которые действует магнитная составляющая волны. Таким образом, световое давление есть результат сложения многих сил Лоренца, действующих на частицы тела.

[ править ]Применение

Возможными областями применения являются солнечный парус и разделение газов [1] , а в более отдалённом будущем — фотонный двигатель.

В настоящее время широко обсуждается возможность ускорения световым давлением, создаваемым сверхсильными лазерными импульсами, тонких (толщиной в 5-10 нм) металлических плёнок с целью получения высокоэнергичных протонов [2] .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: