Пусть
– связный граф.
Определение. Остовным деревом связного графа
называют всякий его остовный подграф, который является деревом.
Если в графе
всего р вершин, то в остовном дереве
ребер. Чтобы построить остовное дерево графа, нужно последовательно удалять ребра, принадлежащие циклам, пока все циклы не будут разрушены. Если в графе
всего q ребер, то, чтобы получить остовное дерево, потребуется удалить
ребро.
На рис. 10 показаны два различных остовных дерева (Т 1 и Т 2) исходного графа
.







