Интегрирующая цепь RC

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C, представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R. Напряжение на выводах резистора обозначим UR.
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен Uout + Const. Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение Uout прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току Iin.
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения Uout от интеграла входного Uin, необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение Uin/Iin во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ, которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ.
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C.
Если взять номиналы RC цепи, когда τ будет значительно больше t, тогда начальный участок экспоненты для короткого периода (относительно τ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость Uin/Iin ≈ R.
В таком случае выходное напряжение Uout будет с допустимой погрешностью пропорционально интегралу входного Uin.
Чем больше величины номиналов RC, тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const, тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a), а интеграл константы будет линейной функцией. ∫adx = ax + Const. Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const.
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x2/2 + Const.
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

Iin = IR = Uin/R = - IC.

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора UC = Uout = - Uin.
Следовательно, Uout определится, исходя из тока общей цепи.

При номиналах элементов RC, когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: