Простая, периодического действия

Простая перегонка – процесс однократного испарения жидкой смеси с последующим конденсированием (сжижением) её паров.

Иначе называется простой дистилляцией.

Применяется для предварительного, грубого разделения сложных жидких смесей. Широко используется в пищевой промышленности.

Перегонка – это тепловой процесс. Движущей силой является разность температур между теплоносителями, например, при обогреве водяным паром

С точки зрения массообмена перегонка – равновесный процесс. Движущая сила, как массообменного процесса, равна нулю, т.к. пар находится в равновесии с жидкостью.

Разделение смеси путём перегонки основано на том, что пар над жидкой смесью имеет большую концентрацию легколетучего (л/л) компонента и, будучи отведённым и сконденсированным, образует обогащённую смесь.

Как и выпаривание, перегонка была известна человечеству давно. Схема современной установки представлена на рис.2.6.

Из куба 1, обогреваемого водяным паром, паровая смесь поступает в конденсатор 2, откуда жидкая обогащенная смесь распределяется по сборникам 3. Установка дефлегматора 4 способствует дополнительному обогащению паровой смеси л/л компонентом.

Рис.2.6. Схемы установок для простой перегонки (а) и перегонки с дефлегмацией (б). 1.Куб. 2. Конденсатор. 3.Сборники. 4.Дефлегматор.

Полная колонна 1 (рис. 2.7, а) состоит из отгонной (исчерпывающей) и концентрационной частей, в состав которых входит дефлегматор 2 и холодильник дистиллята 3. Греющий пар подводится в нижнюю часть колонны, а вода проходит через дефлегматор и холодильник. Питание в полную колонну вводится в среднюю часть (на верхнюю тарелку отгонной части колонны). Дистиллят отводится из холодильника дистиллята.

Отгонная колонна 1 (неполная) (рис. 2.7, б) имеет только отгонную часть, в ней отсутствует дефлегматор 2, а питание подается на ее верхнюю тарелку. В этой колонне поступающее питание истощается низкокипящим компонентом.

Рис. 2.7.. Принципиальные схемы ректификационных колонн:а – полная; б – неполная отгонная; в – неполная концентрационная

Концентрационная колонна 1 (неполная) (рис. 2.7, в) снабжена дефлегматором 2, а питание поступает под нижнюю тарелку в парообразном виде.

В полной ректификационной колонне 1 создается возможность для получения практически в чистом виде обоих компонентов разделяемой бинарной (двухкомпонентной) смеси. В неполной отгонной колонне из нижней части отводится практически чистый труднолетучий компонент, а из верхней – пар, несколько обогащенный легколетучим компонентом. Из верхней части неполной концентрационной колонны отводится практически чистый легколетучий компонент, а из нижней – остаток S, несколько обогащенный труднолетучим компонентом.

Контактное устройство – основной элемент ректификационной колонны, на котором осуществляется процесс массообмена между паром и жидкостью. Интенсивный массообмен на контактном устройстве достигается путем создания развитой поверхности контакта фаз и активной гидродинамической обстановки.

В спиртовой промышленности, как правило, применяют тарельчатые контактные устройства, на которых осуществляется последовательно ступенчатый контакт фаз. Тарелки ректификационных колонн могут быть (рис. 4.58): колпачковыми, сетчатыми (решетчатыми), клапанными, чешуйчатыми, ситчатоклапанными, жалюзийно-клапанными и др. Во всех случаях на тарелке удерживается слой жидкости, через который проходит пар, в результате чего осуществляется массообмен.

Простейшая одноколпачковая тарелка одинарного кипячения используется в бражных колоннах установок малой производительности (для разделения жидкостей со взвешенными частицами или способных выделять осадки). В одноколпачковой тарелке двойного кипячения барботаж происходит из под краев колпачка и воротника. Благодаря этому создаются встречные потоки пара, улучшающие контакт пара и жидкости.

Многоколпачковые (капсульные) тарелки применяют в колоннах для разделения жидкостей, не содержащих взвешенных частиц. Они имеют большой периметр барботажа и более эффективны.Ситчатые (решетчатые) тарелки с отверстиями диаметром 2,5…3,5 мм (для разгонки жидкостей, способных выделять осадки) и 8…12 мм (для разгонки жидкостей со взвешенными частицами).

В провальной тарелке (решетчатого типа) нет сливных стаканов и жидкая фаза сливается через те же отверстия, через которые поступает на тарелку пар. Тарелки изготовляются из стальных или медных листов толщиной 2,5…6 мм. Щели тарелки выполняются штамповкой или фрезеровкой с живым сечением 10…15%. Расстояние между тарелками составляет 300…600 мм. Такие тарелки применяются в бражных колоннах при перегонке паточной и зернокартофельной бражки.

Рис. 2.8. Тарелки ректификационных колонн:

а – одноколпачковая одинарного кипячения; б – одноколпачковая двойного кипячения; в – многоколпачковая; г – ситчатые (решетчатые); д – провальная; е – клапанная; ж – чешуйчатая

В клапанных тарелках распределительным устройством для пара являются клапаны (пластины той или иной формы), которые перекрывают отверстия тарелки и под давлением пара поднимаются, пропуская пар. Предельная высота подъема клапана определяется высотой ограничительного устройства. Клапанные тарелки обладают способностью к самоочищаемости. Они используются в ректификационных и эпюрационных колоннах.

Чешуйчатые тарелки относятся к группе однонаправленных, где пар и жидкость движутся в одном направлении, причем пар способствует движению жидкости. Их целесообразно устанавливать в бражных колоннах, работающих на паточной и зернокартофельной бражке. Чешуйчатые тарелки обеспечивают высокую эффективность и производительность при работе в струйном режиме, когда скорость пара в щелях превышает 12 м/с.

Работу тарелок оценивают по пропускной способности по пару и жидкости, по способности разделять рабочую смесь, по диапазону устойчивой работы, по гидравлическому сопротивлению и др. Пропускная способность по пару и жидкости характеризует производительность колонн (удельный объем конечного продукта с единицы поперечного сечения колонны).

Способность разделять перегоняемую смесь называют эффективностью контактного устройства или колонны в целом. Обычно определяют число теоретических тарелок (ступеней изменения концентраций) или число единиц переноса и по нему оценивают эффективность тарельчатых колонн.

Под теоретической тарелкой понимают такое устройство, которое обеспечивает контакт пара и жидкости, в результате покидающие его потоки, достигают фазового равновесия. Практически на реальных тарелках такое равновесие почти никогда не достигается. Теоретическая тарелка служит эталоном для установления эффективности реальных тарелок.

Брагоперегонные установки. В спиртовой промышленности применяются брагоперегонные установки двух типов – одноколонные и двухколонные (рис. 2.9). В одноколонной установке бражка, предварительно подогретая в дефлегматоре 4, поступает на верхнюю тарелку колонны 1. Нижняя часть колонны называется бражной, куда снизу подводится греющий пар. Из бражной колонны водно-спиртовые пары направляются в нижнюю часть спиртовой колонны 2; здесь пары укрепляются. Из колонны 2 укрепленные пары поступают в межтрубное пространство дефлегматора 4.

Конденсируясь, пары отдают теплоту бражке, протекающей в трубах дефлегматора. Конденсат водно-спиртовых паров возвращается в колонну 2 в виде флегмы. Несконденсировавшиеся пары направляются в холодильник 5, где они конденсируются и образуют спирт-сырец. Спирт-сырец содержит не только воду и спирт, но и другие летучие продукты, входящие в состав бражки.

Рис. 4.2.9. Принципиальные схемы брагоперегонных установок

В двухколонной установке подогретая в дефлегматоре 4 бражка поступает в бражную колонну 7, где из бражки испаряется спирт. Водно-спиртовые пары через ловушку 6 попадают во вторую колонну. В ловушке отделяется жидкость, увлеченная парами; отсюда она возвращается в колонну 1. Верхняя часть колонны 2 служит для укрепления паров спиртом; нижняя часть колонны 3 предназначена для истощения (вываривания) стекающей флегмы, откуда отводится лютерная вода. Таким образом, в этой установке из бражки и флегмы спирт испаряется раздельно, вследствие чего повышается концентрация сухих веществ в барде.

Гидравлический предохранитель 6 предотвращает образование в колонне вакуума. Жидкость из пробного холодильника поступает в сборник 3.

Колонна изготовляется из меди. При приемке она испытывается под давлением 0,1 МПа.

Техническая характеристика одноколонной брагоперегонной установки: производительность при переработке бражки крепостью 7,5 об.% – 500 дал/сут; избыточное давление – до 0,05 МПа; средняя температура, – 100°C; общее число тарелок – 27; в том числе в укрепляющей части: многоколпачковые – 7; ситчатые – 2; в истощающей части одноколпачковые – 18; диаметр колонны (внутренний) – 700 мм; высота колонны – 8240 мм.

Сушка

Сушка – процесс удаления влаги из твёрдых влажных материалов путём подвода тепловой энергии.

Удаление влаги из жидких и газообразных материалов к процессу сушки не относится.

Механическое удаление влаги путём фильтрования, центрифугирования, прессования и т.п. к процессу сушки не относится.

Различают:

1. естественную сушку – на открытом воздухе

2. искусственную сушку – в промышленных условиях.

3. Естественная сушка экономична, качество продукции может быть очень высоким (древесина, кожи, фрукты, виноград и др.), однако громоздка и длительна.

Методы искусственной сушки:

1. Конвективная – сушка воздухом, дымовыми или топочными газами, азотом, аргоном и др.

2. Радиационно-конвективная – сушка инфракрасными лучами в сочетании с конвективной сушкой.

3. Контактная – сушка при контакте с нагретой твёрдой поверхностью.

4. Сушка в электромагнитном поле – сушка диэлектриков токами высокой частоты (ТВЧ) и других материалов в переменном магнитном поле.

5. Сублимационная – сушка в глубоком вакууме, когда влага в материале находится в замороженном состоянии и удаляется возгонкой (сублимацией).

Типы влажных материалов (по П.А. Ребиндеру):

1. Типичные коллоидные тела (эластичные гели) – желатин, агар-агар, мучное тесто и др. При удалении жидкости они значительно изменяют свои размеры.

2. Капиллярнопористые тела (хрупкие гели) – кварцевый песок, древесный уголь, керамические материалы и др. При удалении жидкости эти тела мало сжимаются, становятся хрупкими и могут быть превращены в порошок.

3. Капиллярнопористые коллоидные тела – торф, древесина, картон, ткани, зерно, кожа, глина и др. Обладают свойствами первых двух типов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: