Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Аксиомы и измерения




Аксиоматика в области субъективной ожидаемой полезности опирается в основном на первую из описанных выше схем построения теории, на которой мы и сосредоточим наше внимание в заключение данной главы.

Самая элегантная формальная теория в рамках первой схемы разработана Сэвиджем. Теории ожидаемой полезности Сэвиджа предшествовала схема Рамсея.

Рамсей предлагал использовать «нейтральное» утверждение (нечто, равносильное событию Е с вероятностью ) для измерения полезности исходов путем процедуры последовательного деления пополам. В процедуре для общности требуется бесконечность множества Х. Пусть элементами Х являются некоторые суммы денег (ранжированные от большего предпочтения к меньшему) и х>z; тогда получается элемент у в промежутке между х и z, такой, что он гарантированно находится в отношении безразличия с {х, если событие Е осуществляется, и z, если событие Е не наступает}. Затем полагаем v(y)= v(x)+ v(z). После этого функция v на X используется как мера вероятностей для p*: пусть A - событие (подмножество S) и для x, y, z имеем v(x)>v(y)>v(z), причем у гарантированно находится в отношении безразличия к {х, если событие А наступает, или z, если А не осуществляется}; тогда р*(А) определяется из равенства v(у)=Р*(А)v(х)+[1-Р*(А)]v(z). В некоторых теориях предполагается существование полного набора внешних вероятностных мер, которые позволяют при конечном множестве Х получить единственную, с точностью до аффинного преобразова­ния, функцию v.

Сэвидж действует противоположным образом по сравнению с описанной процедурой «измерений». Прежде всего, он вводит вероятностную меру P* на основе своих аксиом для отношения на Р. При этом он использует процедуру деления пополам, в которой предполагается бесконечность множества S. Пусть х предпочтительнее у и некоторый субъект считает, что в отношении безразличия находятся {х, если наступает А, или y, если не осуществляется А} и {у, если осуществляется А, или х, если А не осуществляется}; тогда из равенства P*(A)v(х)+[1-P*(А)]v(у)=Р*(А)v(у)+[1-Р*(А)]v(х) получается р*(А)= независимо от конкретных значений v(х) и v(у) [до тех пор, пока v(х) v(у)]. Рассмотрим диаграмму

  B A-B A
Выбор 1 x y x
Выбор 2 y x x

Здесь В является «подсобытием» события А и А-В означает событие: «А произошло, а В - нет». Если х не находится в отношении безразличия к у, но (выбор 1)~(выбор 2), то из модели субъективной ожидаемой полезности с помощью непосредственных выкладок получаем P*(В)= P*(А).

После того как будет получена мера Р*, с ее помощью можно получить функцию v на Х. Пусть х предпочтительнее у, который в свою очередь предпочтительнее z, и пусть А является событием, которое состоит в том, что у приводится в отношение безразличия к {х, если осуществляется А, или z, если А не осуществляется}; тогда v(х), v(у), v(z) связаны друг с другом посредством равенства v(у)=P*(А)v(х)+[1-р*(А)]v(z). Фактически, как отмечал еще Сэвидж, его аксиомы означают, что P* приводит к множеству индуцированных мер pf на Х для различных f из А, обладающих структурой, которую Нейман и Моргенштерн использовали в своей теории ожидаемой полезности (подраздел 1.3.2). Следовательно, при заданной P* существование подходящей функции v на Х следует из ранее развитой теории.




Мы не будем рассматривать различные структурные условия, но коротко остановимся на одной новой аксиоме, которая, по существу, не фигурировала в теоретических построениях в подразделе 1.3. Эта аксиома имеет вид условия независимости и регулярности для событий и исходов. Подход Рамсея гарантирует, что, если v(х)>v(у)>v(z), v(х')>v(у')>v(z'); если и у находится в отношении безразличия к {х, если осуществляется А, или z, если А не осуществляется}, то у' безразличен к {х', если осуществляется А, или z', если не осуществляется А}. В результате P*(А) однозначно определяется через отношение разностей функции v. С точки зрения Сэвиджа, гарантировано, что если р*(А)=р*(B), х предпочтительнее, чем у, а у предпочтительнее, чем z, и если у находится в отношении безразличия к {х, если осуществляется А, или z, если не осуществляется А}, то у безразличен к {х, если осуществляется В, или z, если В не осуществляется}. Тогда величина P*(А) однозначно определяется как отношение .





Дата добавления: 2015-07-14; просмотров: 649; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10070 - | 7513 - или читать все...

Читайте также:

 

3.234.210.89 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.