Механические свойства горных пород

Механические свойства характеризуют поведение горных пород в различных механических силовых полях. Их подразделяют на ряд групп:

прочностные, характеризующие предельное сопротивление пород различного рода нагрузкам;

деформационные, характеризующие деформируемость пород под нагрузками;

акустически е, характеризующие условия передачи породами упругих колебаний;

реологические, характеризующие деформирование пород во времени при заданных условиях нагружения;

Прочностные свойства определяют способность пород сопротивляться разрушению под действием приложенных механических напряжений. Они характеризуются пределами прочности при сжатии и растяжении, сцеплением и углом внутреннего трения.

Пределом прочности [s] называют максимальное значение напряжения, которое выдерживает образец до разрушения:

[s] = P / F (3.1)

где Р разрушающая нагрузка; F площадь, на которую действует приложенная нагрузка.

Предел прочности при одноосном сжатии образцов горных пород или, короче, прочность на сжатие [sсж] — наиболее широко определяемая характеристика прочности пород. Её наивысшие значения для горных пород достигают 5000 кгс/см2 (наиболее прочные базальты, кварциты), минимальные значения измеряются десятками и даже единицами килограмм-сил на квадратный сантиметр (мергель, гипс, каменная соль в водонасыщенном состоянии). Прочность на сжатие пород даже одного петрографического наименования в зависимости от состава и структуры может колебаться в весьма больших пределах. Так, показатель [sсж] для различных базальтов изменяется в диапазоне 300—5000 кгс/см2, гранитов — 370—3800 кгс/см2. Обычно прочность пород на сжатие тем выше, чем выше их плотность.

Прочность на растяжение [sр] горных пород значительно ниже их прочности на сжатие. Это одна из наиболее характерных особенностей горных пород, определяющих их поведение в поле механических сил. Горные породы плохо сопротивляются растягивающим усилиям, появление которых в тех или иных участках массива пород при разработке служит критерием опасности обрушений пород и разрушения горных выработок.

Отношение [(sр/scж] весьма показательно для сравнительной характеристики различных пород и колеблется в пределах 1/5—1/80, чаще же всего в пределах 1/15—1/40. Верхний предел 1/5 соответствует глинистым породам, нижний — наиболее хрупким породам (гранитам, песчаникам и др.).

Прочность на срез (сдвиг} может быть охарактеризована двумя функционально связанными параметрами: сцеплением и углом внутреннего трения породы. Эту функциональную связь выражают уравнением Кулона—Мора:

tn = sn tgj + [t0],(3.2)

где sn —нормальное напряжение при срезе; (j—угол внутреннего трения; [t0]—сцепление.

Сцепление [t0] характеризует предельное сопротивление срезу по площадке, на которой отсутствует нормальное давление, т. е. нет сопротивления срезающим усилиям за счет внутреннего трения. Угол внутреннего трения j или коэффициент внутреннего трения tgj характеризует интенсивность роста срезающих напряжений с возрастанием нормальных напряжений, т. е. представляет собой коэффициент пропорциональности между приращениями касательных d tn и нормальных d sn напряжений при срезе:

d tn

tgj = --------(3.3)

d sn

Значение сцепления горных пород меняется в пределах от десятых долей (глины, мергели, слабо сцементированные песчаники и др.) до сотен килограмм-сил на квадратный сантиметр (прочные песчаники и массивно-кристаллические породы), угол внутреннего трения—от 10—15 для некоторых глин до 35—60° для прочных массивно-кристаллических и метаморфических пород (граниты, сиениты, кварциты и др.).

Для изучения деформационных свойств горных пород обычно строят кривую деформирования в координатных осях «s - e», при этом от начальной точки до некоторого значения напряжений, называемого пределом упругости, наблюдается упругое деформирование горных пород, деформации носят чисто упругий характер и исчезают после снятия нагрузки.

Упругие свойства горных пород характеризуются модулем упругости Е при одноосном напряженном состоянии (модулем продольной упругости или иначе модулем Юнга), модулем сдвига G, модулем объемной упругости К и коэффициентом поперечных деформаций v (коэффициентом Пуассона).

Модуль упругости Е представляет собой отношение нормального напряжения sn к относительной линейной деформации образца el = Dl/l в направлении действия приложенной нагрузки:

Е=sn /el (3.4)

Модуль сдвига G отношение касательного напряжения t к относительному сдвигу g:

G = t / g. (3.5)

Относительный сдвиг g именуют иногда угловой деформацией. Он характеризует изменение формы деформируемого тела и выражается зависимостью

p/2 - a

g = - -----------,(3.6)

p/2

где a—угол наклона каждого прямоугольного элемента тела после деформирования.

Модуль объемной упругости К, или модуль всестороннего сжатия, равен отношению равномерного всестороннего напряжения к относительному упругому изменению объема образца:

K = sv / DV / V, (3.7)

где DV / V — относительное изменение объема.

Коэффициент поперечных деформаций v, или коэффициент Пуассона, является мерой пропорциональности между относительными деформациями в направлении, перпендикулярном к вектору приложенной нагрузки и параллельном ему:

Dd/d

v = -----------(3.8)

Dl / l

Перечисленные характеристики упругих свойств пород функционально связаны между собой следующими соотношениями:

E

G = -----------(3.9)

2(l + v)

E

К = ------------.(3.10)

3(1 - 2v)

Таким образом, зная две из этих характеристик, можно расчетным путем определить значения двух других. Обычно экспериментально определяют на образцах пород характеристики Е и v.

Модули упругости различных пород изменяются в пределах (1¸3)-104—(1¸3)-106 кгс/см2. Наиболее низкие модули упругости имеют пористые туфы, слабые глинистые сланцы, галит, гнейсы, филлиты. Наиболее высоки модули упругости базальтов, диабазов, пироксенитов, дунитов, монтичеллита. С ростом плотности пород модули их упругости, как правило, возрастают. Модули упругости слоистых пород в направлении слоистости выше, чем перпендикулярно к слоистости.

Коэффициенты поперечных деформаций v горных пород теоретически могут изменяться в пределах от 0 до 0,5. Для большинства пород они колеблются в интервале значений от 0,15 до 0,35. Минимальные значения v имеют некоторые биотитовые и известковые сланцы, опал, филлиты, гнейсы (0,01—0,08), максимальные - некоторые дуниты, амфиболиты (0,40—0,46).

За пределом упругости происходит пластическое деформирование с образованием необратимых остаточных деформаций. Для характеристики этого процесса применяют более общий показатель— модуль деформации, представляющий собой отношение приращений напряжений к соответствующему приращению вызываемых ими деформаций.

Пластические свойства могут быть также охарактеризованы коэффициентом пластичности, для вычисления которого предложено несколько подходов.

Один из них, получивший широкое признание, заключается в определении коэффициента пластичности как отношения полной деформации до предела прочности материала к чисто упругой деформации, т. е. до предела упругости:

П = ЕПУ, (3.11)

где EП полная деформация, соответствующая моменту разрушения материала; Еу упругая деформация.

Альтернативным показателем по отношению к коэффициенту пластичности является коэффициент хрупкости, отражающий способность горных пород разрушаться без проявления необратимых (остаточных) деформаций. Он может быть приближенно охарактеризован, как уже упоминалось, соотношением [sр] / [sсж] или по формуле

Kxp = Wy / Wp, (3.12)

где Wy работа, затраченная на деформирование породы до предела упругости; Wp общая работа на разрушение.

Значения Kxp для различных пород изменяются в весьма широких пределах: например, для известняка и мрамора,Kxp = 0,06—0,07, а для ийолит-уртита Kxp = 0,54.

Проявление хрупкости горных пород существенно зависит от режима приложения нагрузок. Динамические, ударные нагрузки приводят породы к хрупкому разрушению, тогда как длительное приложение даже сравнительно небольших нагрузок может вызывать пластические деформации.

Акустические свойства определяют условия распространения в горных породах упругих колебаний. Они характеризуются скоростью распространения упругих волн v и коэффициентом затухания a.

Среди различного вида упругих колебаний в твердых телах наибольший интерес представляют продольные, поперечные и поверхностные (релеевские) волны. В продольных волнах направление колебаний частиц породы совпадает с направлением распространения волны; в поперечных направление колебаний частиц перпендикулярно к направлению распространения волны. Поверхностные волны—это колебания поверхности среды (поверхности образца горной породы).

Соотношение между скоростями продольных Vp, поперечных Vs и поверхностных Vr упругих волн характеризуется следующим неравенством:

Vp > Vs > Vr. (3.13)

Скорости распространения упругих волн определяются плотностью, характеризующей смещаемую массу, и показателями упругости среды, связывающими возвращающие силы со смещениями колеблющихся частиц.

Произведение плотности породы на скорость соответствующей волны называют акустическим сопротивлением или акустической жесткостью:

Q = r V. (3.14)

Оно характеризует влияние свойств среды на интенсивность (частоту) колебаний в этой среде, которая, кроме того, определяется еще параметрами возбудителя колебаний.

Поскольку горные породы не являются идеально упругими твердыми телами, в них происходит ослабление возбуждаемых упругих волн вследствие поглощения энергии колебаний в среде из-за трения, теплопроводности и других эффектов. Это ослабление, или затухание, подчиняется экспоненциальному закону.

Скорость продольных упругих волн является наиболее употребительной характеристикой. Ее значение для различных изверженных пород варьирует, как правило, в пределах 3,5— 7,0 км/с, но иногда достигает 8,5 км/с. В осадочных породах она обычно ниже, составляет 1,5—4,5 км/с, и лишь в плотных известняках достигает 6—7 км/с. В неконсолидированных осадочных и рыхлых обломочных толщах она еще ниже (0,1— 2,0 км/с).

С ростом сжимающих нагрузок скорости упругих волн в горных породах, как правило, возрастают.

Реологические свойства характеризуют изменение (рост) во времени деформаций в горных породах при постоянном напряжении (явление ползучести ), либо ослабление (уменьшение) напряжений при постоянной деформации (явление релаксации). Ползучесть и релаксация также как и пластические деформации, являются необратимыми, остаточными, но если пластичность пород характеризует их поведение при напряжениях, превышающих предел упругости, то ползучесть, представляющая собой медленное нарастание необратимых деформаций, проявляется и при напряжениях, меньших предела упругости, но при достаточно длительном воздействии нагрузок. Явление, обратное ползучести, называют релаксацией напряжений. При релаксации упругие деформации в породе с течением времени постепенно переходят в необратимые, но общая деформация во времени не изменяется. При этом происходит падение напряжений.

Подобные процессы вообще характерны для реальных твердых материалов, они являются предметом изучения специальной научной дисциплины—реологии (от греческого «рео»— течь) и имеют глубокую физико-химическую природу. Весьма существенную роль в проявлении необратимых деформаций играют дефекты структуры материалов. Поэтому реологические процессы в принципе можно рассматривать как перемещение дефектов под воздействием внешних нагрузок. Однако исключительная сложность определения молекулярных констант и разнообразие микроструктур реальных твердых тел не позволяют в настоящее время применять уравнение связи между напряжениями и деформациями тел на микроскопическом уровне. Вследствие этого изучение деформируемости твердых тел во времени, в том числе и горных пород, проводят на макроскопическом (феноменологическом) уровне, выражая взаимосвязи напряжений и деформаций в формализованных (т. е. не учитывающих реального механизма протекающих явлений) уравнениях механики сплошных сред.

Весьма характерной чертой реологических процессов, в частности ползучести, является зависимость деформации, наблюдаемой в данный момент времени, от характера всего процесса нагружения материала, или, другими словами, от всей предыдущей истории его деформирования. Это свойство реальных материалов называют наследственностью.

Особенностью большинства горных пород, как показывают эксперименты, является практически.линейная зависимость между приращениями деформаций и приращениями напряжений в любой момент времени, т. е. проявление линейной ползучести. Это позволяет применять для описания деформирования горных пород во времени теорию деформирования линейных наследственных сред. При этом полная деформация в любой момент времени слагается из двух составляющих: упругой деформации в момент приложения нагрузки и собственно деформации ползучести.

В качестве характеристики реологических свойств пород используют также период релаксации время, в течение которого напряжение убывает в е раз (е = 2,72 основание натуральных логарифмов). Период релаксации зависит от начального уровня напряжений и степени вязкости пород. Для прочных горных пород значения периода релаксации очень велики, оцениваются в сотни тысяч лет и даже более.

Прочность и упругость пород при длительном воздействии достаточно больших нагрузок понижаются, асимптотически приближаясь к некоторым предельным значениям — пределу длительной прочности s¥ и предельному модулю длительной упругости Е¥. Для большинства пород s¥ = (0,7—0,8)[sсж], Е¥ = (0,65- 0,95) Е.

3.1.Исследование механических свойств горных пород

Механическими свойствами горных пород называются такие, которые определяют их поведение под воздействием внешних усилий - нагрузки - и проявляются в сопротивлении разрушению и деформации. Свойство горных пород сопротивляться разрушению и образованию больших остаточных деформаций под воздействием нагрузки, или, точнее, воспринимать не разрушаясь в определенных пределах и условиях те или иные нагрузки называется прочностью, а их свойство изменять под нагрузкой форму сложения и объем - деформацией. Эти свойства выражают и оценивают прочностными и деформационными показателями.

Природа прочности горных пород отличается значительной сложностью. В зависимости от влияния тех или иных факторов их прочность может изменяться в широких пределах, они могут быть очень прочными, прочными, средней прочности, малой прочности и очень малой. Кроме того, прочность одних горных пород проявляется полной мере и сразу, у других она изменяется во времени. В соответствии с этим можно говорить об условно-мгновенной, или стандартной и длительной прочности.

От различной прочности горных пород зависит их деформируемости. Деформации, при прочих равных условиях, могут изменяться по абсолютной и относительной величине, характеру, т.е. быть обратимыми и необратимыми и развиваться быстро (мгновенно) или медленно во времени.

Для скальных пород характеры упругие свойства, а полускальные являются только частично упругими. Для оценки упругих свойств служат показатели, характеризующие способность горных пород упруго сопротивляться деформациям. Основными показателями деформационных свойств горных пород являются: модуль упругости, коэффициент Пуассона, коэффициент бокового давления, модуль общей деформации и др.

Прочность скальных и полускальных пород определяется не только их петрографическими особенностями, величиной и характером действующей нагрузки, но и условиями ее приложения.

В соответствии с этим для скальных и полускальных горных пород различают прочность на сжатие, растяжение, скалывание.

Наиболее характерными и употребительными из показателей механических свойств горных пород является прочность при одноосном сжатии, часто именуемая крепостью пород. Этот показатель используется при выборе системы разработки, технологии горных работ и применяемого для них горного оборудования, принимается за основу нормирования оплаты горных работ.

Прочность при растяжении играет существенную роль для оценок устойчивости кровли подземных выработок, прогибающейся при больших пролетах и отрывающейся при зависании.

Показатели механических свойств пород в зависимости от точности расчетов, в которых они используются, и от объема каменного материала пробы определяются нормальными, упрощенными и грубыми методами (11). Нормальными считаются методы, обеспечивающие надежность получаемых результатов на 95-98%, упрощенными - на 85-90% и грубыми на 60-75%. Первыми методами испытываются 8-10 образцов из пробы для определения каждого показателя, вторыми - 4-5 и третьими 2-3 образца. На этапе поисковой разведки допускается определять механические свойства пород с надежностью, соответствующей грубым методам испытаний.

На этапе предварительной и детальной разведки (и доразведки) надежность механических испытаний должна соответствовать нормальным или упрощенным методам испытаний с определением средней пробы величины и коэффициента вариации каждого определяемого показателя. Грубые методы испытаний и оценок механических свойств пород допускаются в случаях:

- определения предела прочности при сжатии слабых разновидностей угля и пород, пробы которых представлены в виде мелочи размером не менее 20·20·10 мм и непригодны для испытаний нормальными или упрощенными методами;

- испытание проб слоев, прослоев, пластов мощностью менее 0.3 м, отбираемых в количестве, недостаточном для проведения испытаний методами нормальной надежности.

В качестве значений показателей механических свойств пород, определяемых грубыми методами, принимаются результаты повторных испытаний образцов, различающихся между собой не более, чем на 25-30%.

3.1.1.Оборудование, инструменты и материалы, применяемые при лабораторном исследовании механических свойств горных пород

Для определения механических свойств горных пород применяют следующее основное оборудование, инструменты и материалы:

установки колонкового бурения или станок вертикально-сверлильный с твердосплавными или алмазными коронками с внутренним диаметром от 40 до 100 мм для выбуривания образцов из проб горных пород; станки камнерезные (типа САСП или СКУ), снабженные отрезными алмазными кругами диаметром не менее 250 мм для изготовления образцов; станок шлифовальный с чугунным диском, вращающимся вокруг вертикальной оси, любой конструкции для шлифовки плоских поверхностей образцов; стойку типа С-111 с индикатором часового типа или многооборотным для контроля параллельности поверхностей образцов горных пород; пресс с гидравлическим приводом или универсальную испытательную машину мощностью на 20-30% превышающей разрушающую образец силу - для испытания образцов, эксикатор для хранения проб гигроскопических пород; угольник поверочный 90о типа УП и штангенциркуль для контроля параметров образцов горных пород, материал шлифовальный.

3.1.2.Методы определения предела прочности горных пород при одноосном сжатии. Нормальные методы

а) Метод одноосного сжатия цилиндрических образцов стальными плитами

Сущность метода заключается в определении максимальной разрушающей силы при одноосном сжатии цилиндрического образца породы диаметром 40-50 мм.

Образцы цилиндрической формы изготавливают путем выбуривания керна из монолитов или керна большого диаметра с последующим разрезанием на куски высотой, равной диаметру. Отношение высоты и диаметра допускаются от 0.9 до 1.1.

Торцовые поверхности образца при необходимости шлифуют. Неровность поверхности должна быть не более 0.05 мм. Торцовые поверхности образца должны быть параллельны друг другу и перпендикулярны боковой поверхности. Параллельность торцовых поверхностей контролируют индикатором по двум взаимно перпендикулярным диаметрам. Отклонение от параллельности допускается не более 0.1 мм по длине диаметра. Перпендикулярность торцовых плоскостей боковой поверхности контролируют поверочным угольником в 4-х точках каждой торцевой поверхности, смещенных относительно друг друга на 90о.

Допускаемые отклонения при каждом замере не должны превышать1.0 мм по длине диаметра или высоте образца. Разность взаимно перпендикулярных диаметров поперечных сечений, контролируемых штангенциркулем в верхней, средней и нижней частях образца, не должна быть более 1.0 мм.

Образец породы устанавливают торцевой поверхностью в центре опорной плиты пресса или испытательной машины без каких-либо прокладок или смазки.

Приводят пресс в действие со скоростью нагружения в пределах 1-30 кгс/см2 в зависимости от прочности породы. Выбранную скорость нагружения сохраняют до разрушения образца. При каждом испытании фиксируют максимальную разрушающую нагрузку с точностью силоизмерительного устройства пресса или испытательной машины.

Предел прочности при сжатии цилиндрического образца в Мпа вычисляют по формуле:

R =Pmax/Fp·102, где

Pmax - максимальное значение разрушающей нагрузки Н;

Fp = p/4 ·d2» 0.785 d2 - начальная площадь поперечного сечения образца, см2;

d -диаметр образца, см.

За окончательный результат принимают (`RС) - среднее арифметическое результатов всех определений по пробе и рассчитывают коэффициент вариации (V).

Описанный метод имеет ограниченное распространение по следующим причинам. Для определения предела прочности при сжатии согласно ГОСТу требуется не менее 9-10 образцов, что соответствует длине керна в пробе 60-70 см. При сокращенном комплексе испытаний потребуется керна не менее 1.2-1.4 м при условии, что представлен крепкими и плотными породами. Из пород слоистых средней крепости или тонкорассланцованных, что довольно часто имеет место в практике разведочных работ на уголь, возможно получение в лучшем случае 6-8 образцов, а в большинстве своем единичных образцов. Кроме того, слоистость керна должна быть перпендикулярной к его длинной оси или близкой к этому, так как по условиям испытаний разрушающая нагрузка при сжатии должна прилагаться только перпендикулярно слоистости. В условиях Донбасса породы угленосной формации залегают под разными углами и слоистость пород в керне, как правило, расположена не строго перпендикулярно к его оси. По этим же причинам этот метод не всегда позволяет изготавливать из керна цилиндрические образцы для определения предела прочности породы при сжатии параллельно ее слоистости.

б)Метод испытания образцов-дисков соосными пуансонами

Метод распространяется на твердые горные породы с пределом прочности при сжатии не менее 5 Мпа и применяется в качестве косвенного метода нормальной надежности; эффективен при использовании в качестве проб пород буровых кернов, особенно при малом количестве породного материала в пробе, например, при опробовании маломощных слоев.

Сущность метода заключается в измерении максимальной разрушающей нагрузки сжатия, приложенной в центре породного диска посредством соосных цилиндрических пуансонов, под действием которой возникают напряжения трехосного сжатия, приводящие к разрушению по плоскостям скалывания в центральной части образца и радиальному разрыву охватывающей его породы (Рис.2).

Образцы в виде цилиндрических дисков диаметром от 30 до 100 мм и толщиной 11 ± 1 мм изготавливают путем резки керна и шлифования плоских поверхностей дисков. Чистота поверхности - не ниже 9 класса по ГОСТ 2789-73. Непараллельность плоскостей измеряется индикатором и допускается не более ± 1 мм; отклонение от плоскостности (выпуклость или вогнутость) должно быть не более ± 0.03 мм. Штангенциркулем измеряют диаметры образца с точностью до 1 мм в двух взаимноперпендикулярных направлениях. За диаметр диска принимают среднее арифметическое этих измерений.

При ограниченном количестве породного материала допускается использовать для испытаний плоскопараллельные пластины некруглых очертаний в плане (косые срезы керна, плоские обломки), в контур поверхности которых можно вписать окружность диаметром не менее 30 мм.

За диаметр и центр приложения нагрузки принимают диаметр и центр окружности, вписанной в контур образца.

Рабочие торцы пуансонов должны быть плоскими и параллельными.

Образец устанавливают между пуансонами нагрузочного приспособления соосно с ними (на глаз) с точностью ± 1 мм. Приведя пресс в действие нагружают образец до разрушения. При каждом испытании фиксируют максимальную разрушающую нагрузку с точностью силоизмерительного устройства пресса или испытательной машины. Предел прочности при сжатии образца (Rc) в Мпа рассчитывают по формуле Rc =Р/А× 10-2, где

Р - максимальное значение разрушающей нагрузки, Н;

А-расчетная(приведенная)площадь поперечного сечения образца,см2.

Окончательную обработку результатов - определение среднего арифметического значения Rc, коэффициента вариации V - производят по общепринятым формулам.

Указанный метод имеет широкое распространение и эффективен при малом количестве кернового материала в пробе.

д)Метод раскалывания сферическими инденторами породных кусков произвольной формы, в том числе неправильной формы, с использованием корреляции показателей прочности

Сущность определения предела прочности при одноосном сжатии заключается в расчете его по установленным корреляционным зависимостям между пределом прочности цилиндрических образцов на одноосное сжатие и пределом прочности образцов произвольной формы на одноосное растяжение при нагружении сферическими инденторами.

Для испытания пригодны образцы произвольной и неправильной формы. Количество образцов, представляющих породную пробу, должно быть не менее пяти в случае применения образцов правильной формы и не менее восьми - при использовании образцов неправильной формы. При необходимости для устойчивого положения образца неправильной формы между инденторами на двух противоположных его поверхностях, непосредственно в местах предполагаемого контакта с индекторами, подготавливают любыми подходящими средствами примерно параллельные площадки размером не менее 10 х 10 мм. Степень их параллельности определяется условием устойчивости. Специальных требований к чистоте площадок контакта не предъявляются: допускается естественная шероховатость после откалывания геологическим молотком или обработки напильником.

Проведение испытания

Образец устанавливают между индекторами так, чтобы обеспечить нагружение в требуемом направлении, что достигается соответствующей ориентацией оси нагружения. Наиболее рациональные схемы испытаний образцов некоторых типичных форм с соответствующей изотропным породам ориентацией и очертанием вероятных поверхностей разрыва приведены на рис.4. Испытания признают действительными в случае сквозного раскола (разрыва), проходящего через ось нагружения образца. При разрушении типа косого скола (от точек нагружения к боковым граням образца) испытание считают недействительным.

Для предотвращения разрушения типа косого скола достаточно, чтобы ось нагружения совпадала с наименьшим линейным размером образца или была удалена от ближайшей боковой грани на расстояние не менее половины расстояния между точками приложения нагрузок по оси нагружения.

Образовавшиеся обломки допускается использовать для повторного испытания при условии, что их размеры удовлетворяют требованиям, указанным выше, а образующаяся при повторном раскалывании поверхность разрушения не проходит через ось нагружения первоначального испытания.

При испытании измеряют: максимальную разрушающую нагрузку Рр в ньютонах с точностью силоизмерительного устройства испытательной машины или пресса, площадь фактической поверхности разрыва образца правильной формы по его линейным размерам в см2 с точностью до первого знака после запятой, и площадь фактической поверхности разрыва образца неправильной формы, прикладывая обломок образца поверхностью разрыва к листу миллиметровой бумаги и обводя контуры этой поверхности карандашом.

При разрыве образца на две части вычисляют величину фактической площади поверхности сквозного размыва образца Sрв м2 · 10-4; по результатам измерения линейных размеров образцов правильной формы или по очертаниям контура фактической поверхности разрыва образцов неправильной формы. В последнем случае применяют либо метод непосредственного подсчета по миллиметровой сетке, либо сводят сложную конфигурацию контура к одной или нескольким простейшим неометрическим фигурам (напр. трапеция - рис.5в), либо применяют планиметр, палетки и др. При этом резко выступающие периферийные части контура в виде остроконечных пиков в расчет не принимаются (заштрихованная площадь).

При разрыве образца на число частей больше двух (Рис.5г) расчетную величину фактической площади поверхности сквозного разрыва образца (Sр) в м2 · 10-4 вычисляют по формуле:

Sр = 2· (S01 + S02 + ...+ S0п)/п, где

S01, S02, ..., S0п - площади полуповерхностей разрыва, поверхностей разрыва по каждому из направлений разрыва (см.рис.5г.); n - число частей разрыва.

Предел прочности горной породы на одноосное растяжение (Rр) вычисляют по формуле:

Rр =0.75 · Рр /Sp · Km;

где Km - безразмерный масштабный коэффициент, принимаемый равным 1.00 при Sp = (15 ± 3) м2 · 10-4.

Указанный метод применяется в тех случаях, когда в пробе недостаточно породного материала и для получения более полной информации значение предела прочности при сжатии породы вычисляется по корреляционным зависимостям, кроме того при испытаниях слабых, трещиноватых и расслаивающихся пород и углей, из которых не представляется возможным изготовить образцы правильной формы для прямых определений предела прочности на сжатие.

3.2. Грубые методы

3.2.1 Метод определения коэффициента крепости по Протодьяконову

Сущность метода заключается в определении коэффициента крепости, который пропорционален отношению работы, затраченной на дробление горной породы к вновь образованной при дроблении поверхности, оцениваемой суммарным объемом частиц размером менее 0.5 мм.

Для проведения испытания применяют: прибор ПОК, состоящий из стакана, вставленного в него трубчатого хопра, внутри которого свободно помещается гиря массой 2.4 ± 0.01 кг с ручкой, привязанной к гире шнуром. Трубчатый копер имеет в верхней части отверстия, в которые вставляются штифты, ограничивающие подъем гири. К комплект прибора входит объемомер, состоящий из стакана и плунжера со шкалой измерений с диапазоном показаний от 0 до 150 мм вдоль его продольной оси; сито с сеткой № 05 по ГОСТ 6613-73 для просеивания породы после дробления. Пробу горной породы раскалывают молотком до получения кусков размером 20-40 мм. Из измельченного материала пробы отбирают 20 навесок массой 40-60 г каждая.

Число сбрасывания гири на каждую навеску устанавливают при дроблении первых пяти навесок. Каждую навеску отдельно дробят в стакане гирей, падающей с высоты 60 см. Число сбрасываний гири принимают в зависимости от ожидаемой крепости породы, обычно от 5 до 15 сбрасываний на каждую навеску.

При очень мягких породах число сбрасываний может быть сокращено до 1, а при очень крепких - увеличено до 30.

Правильность выбранного режима испытания контролируют после просеивания первых пяти раздробленных навесок на сите до прекращения выделения подрешетного продукта и замера его объема в объемомере. При получении столбика мелочи высотой 20-100 мм по шкале плунжера число сбрасываний на каждую навеску сохраняют для оставшихся 15-ти навесок. При меньшей или большей высоте столбика мелочи в объемомере число сбрасываний корректируют соответственно в большую или меньшую сторону.

Оставшиеся 15 навесок дробят в приборе последовательно в установленном режиме испытания: при постоянном числе сбрасываний гири n и высоте подъема гири 60 см.

После дробления каждых пяти навесок их просеивают на сите, подрешетный продукт сита ссыпают в объемомер, замеряют плунжером высоту столбика мелочи и записывают ее.

Коэффициент крепости горной породы (f) вычисляют по формуле

f = 20 · n / h, где

20 - эмпирический числовой коэффициент, обеспечивающий получение общепринятых значений коэффициента крепости и учитывающий затраченную на дробление работу;

n - число сбрасываний гири при испытании одной навески;

h - высота столбика мелкой фракции в объемомере после испытания пяти навесок, мм.

За окончательный результат испытания принимают среднее арифметическое результатов четырех определений.

Данный метод применяется, когда для определения предела прочности при сжатии пород со значительной структурной нарушенностью ни один из вышеперечисленных методов не приемлем. Метод по надежности относится к грубым и пригоден лишь для испытания невязких пород и углей.

3.2.2.Методы определения предела прочности горных пород при растяжении

а) Метод раскалывания цилиндрических образцов по образующей (“бразильский” метод)

Сущность метода заключается в определении максимальной разрушающей силы, приложенной перпендикулярно к образующей цилиндрического образца породы, в результате чего в образце возникают растягивающие напряжения, приводящие к его разрушению в плоскости продольного сечения.

Для проведения испытания образец породы кладут боковой поверхностью без каких-либо прокладок и смазки в центре опорной плиты пресса или испытательной машины (Рис.6).

Нагружение производят плавно до разрушения образца. После разрушения образца плиты пресса разводят, вынимают обе половины образца и штангенциркулем измеряют размеры плоскости его разрушения в двух направлениях: по образующей и диаметру.

Предел прочности горной породы при растяжении в Па вычисляют по формуле: Rp = 0.64 · Pmax / (d · h)· 105,где

Pmax - максимальная разрушающая нагрузка в кг;

d - диаметр образца, см;

h - высота образца, см.

Преимуществом метода является его простота, а к недостаткам относятся: потребность в большом количестве кернового материалами невозможность определения предела прочности породы при при растяжении перпендикулярно к слоистости, а также трудность точной обработки боковой поверхности образцов.

б) Метод разрыва соосными пуансонами образцов дисковой формы с отверстием

Метод применим к породам с прочностью при растяжении от 5 до 120·105 Па.

Для проведения испытания применяются оборудование, инструменты и материалы, указанные в п.3.5.1. и дополнительно резиновые цилиндры диаметром 11.3-12 мм, которые вставляют в отверстие, просверленное в центре образца.

Форма образцов круглая цилиндрическая диаметром от 30 до 100 мм с плоскопараллельными торцами - сторонами диска, с концентрическим отверстием диаметром в пределах 11.35-11.45 мм. Толщина диска 10-12 мм с допустимым отклонением от параллельности, плоскости и шероховатости в пределах 1.1 мм. Отверстие должно быть точно притерто и на его краях не должно быть отколов. В отверстие вставляют резиновый цилиндр, а пуансоны устанавливают непосредственно на торцы этого цилиндра. Пресс приводится в действие и в результате давления на резинку соосных пуансонов образец подвергается радиальному разрыву. Растягивающие напряжения в нагрузочном образце аналогичны напряжениям в стенках толстостенного сосуда и по величине зависят от усиления давления пуансонов Р кг и диаметров образца D, см, и отверстия d, см. Радиальный разрыв начинается вблизи стенок отверстия и трещина появляется по радиусу образца, разрывая его на секторы.

Предел прочности при растяжении породы (Rr) в Па вычисляют по формуле:

Rr = Р / В · 105,

где В - расчетная площадь (см2).

Среднее значение предела прочности породы и коэффициент его вариации вычисляют по общепринятым формулам.

Метод имеет ограниченное применение из-за его трудоемкости.

3.2.3. Метод определения предела прочности при изгибе

Сущность метода заключается в определении разрушающей силы при изгибе образца породы, опирающегося на металлическое кольцо, при воздействии на него вертикальной нагрузки, передаваемой через кольцевой пуансон.

Образец горной породы кладут на опорное кольцо, а сверху на него ставят кольцевой пуансон. Отцентрировав испытательное устройство с образцом по вертикальной оси, помещают его между плитами пресса так, чтобы вертикальная ось устройства совмещалась с продольной осью пресса. Отклонения между осями при установке допускается не более 1-2 мм.

Пресс приводят в действие и образец плавно нагружают до его разрушения.

Предел прочности горной породы при изгибе

Rи = 0.75· Рmax /h · 105, где

Рmax - максимальная разрушающая сила, кг;

h - толщина образца, см.

Для практических расчетов с погрешностью не более 10% с учетом, что h = 1 см, предел прочности при изгибе вычисляют по формуле

Rи = 0.75 · Рmax · 105, Па


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: