Границы применимости классической механики. Соотношения неопределенностей Гейзенберга

В классической механике Ньютона были сформулированы не только качественные закономерности механического движения, но классическая механика устанавливает и универсальный способ описания движения материальных точек, из которых, как казалось Ньютону, можно построить всевозможные материальные объекты и, таким образом, дать теоретическое объяснение любых механических явлений, встречающихся в природе. В основу классической механики положены следующие постулаты:

1. Физическое пространство и время существуют сами по себе и не зависят от материальных тел, которые находятся в пространстве. Пространство является однородным и изотопным. Из этого, как мы уже отмечали, следуют законы сохранения импульса и момента импульса. Независимость хода времени от материальных тел, находящихся в пространстве, ведет к однородности времени, а следовательно, и к закону сохранения энергии.

2. Для инерциальных систем отсчета справедлив принцип относительности Галилея, согласно которому все механические процессы протекают одинаково в любой инерциальной системе отсчета.

3. Взаимодействие между любыми физическими объектами, находящимися на произвольном расстоянии друг от друга, осуществляется мгновенно (силы взаимодействия зависят от положений материальных точек в этот же момент времени). Это означает, что скорость передачи взаимодействия в механике Ньютона считается бесконечно большой.

4. Масса материальной точки, которая фигурирует в выражении для второго закона Ньютона, не зависит от скорости ее движения.

5. Все кинематические и динамические переменные (координаты, проекции импульса, момента импульса и т.д.) можно измерить в принципе сколь угодноточно. Следствием этого является возможность характеризовать движение любой материальной частицы с помощью понятия траектории.

Однако постепенно выявилась ограниченность приведенных постулатов и соответственно всего здания классической механики. Важную роль в этом сыграли экспериментальные исследования электромагнитных явлений и разработка основ теории электромагнетизма в трудах М.Фарадея и Дж. Максвелла. Основной объект теории электромагнетизма – электромагнитное поле – представляет собой вид «немеханической» материи, не подчиняющейся законам Ньютона.

Точные измерения скорости света, выполненные на рубеже 19-20 вв., показали, что скорость света является предельной скоростью передачи любыхвзаимодействий и сигналов из одной точки пространства в другую. Этот экспериментальный факт находится в резком противоречии с принципом относительности Галилея, т.е. с классическим законом сложения скоростей. Разрешение этого противоречия привело к созданию релятивистской механики.

Было также показано, что реальное физическое пространство обладает так называемой кривизной, определяемой расположением масс в пространстве. Это подтвердилось во время солнечного затмения в 1919 г. по отклонению световых лучей, идущих от звезд, от прямолинейного распространения вблизи Солнца.

Разработанная Э.Резерфордом планетарная модель атома выявила еще одну проблему, не поддающуюся описанию в рамках классической физики, - проблему устойчивости атома. Решение ее было найдено в первой четверти 20 в. в рамках квантовой механики.

В качестве критерия применимости классической механики для описания физических явлений используют величину с размерностью действия . Изменение действия равно произведению энергии на приращение времени и (или) произведению импульса на приращение координаты . Если характерное изменение действия соизмеримо с постоянной Планка или меньше ее, то для описания изучаемого явления классическая механика неприменима и необходимо пользоваться квантовой механикой.

Таким образом, вырисовываются следующие границы применимости законов ньютоновской механики:

1) классическая механика применима для описания механических систем, в которых скорость составляющих ее объектов намного меньше скорости света ();

2) классическая механика применима для описания только тех объектов, для которых динамические величины с размерностью действия намного больше постоянной Планка .

Соотношения Гейзенберга. Физические величины никогда не могут быть измерены абсолютно точно. Измеренное значение любой физической величины всегда отличается от ее истинного значения, которое всегда неизвестно, так как при выполнении любого измерения неизбежна ошибка. Источников ошибок много. Они связаны с несовершенством измерительных приборов, с изменением условий опыта, с неполнотой теоретической модели и приближенным характером используемого метода измерений, с округлением при вычислениях и т.д.Поэтому необходимым условием выполнения любого измерения является нахождение некоторого интервала значений, в который с высокой вероятностью должно попасть истинное значение измеряемой величины.

Измерение, например, координаты материальной точки должно сопровождаться определением ошибки измерения , измерение компоненты импульса - определением ошибки .

В классической физике не было принципиальных ограничений на точность измерений. Считалось, что при достаточно совершенной аппаратуре все величины, характеризующие физическую систему, могут быть измерены со сколь угодно высокой точностью.

Однако для микроскопических систем неограниченное повышение точности получается не всегда. В некоторых случаях существуют принципиальные ограничения на точность измерений. Эти ограничения не определяются совершенством измерительной аппаратуры. Каждое из этих ограничений является фундаментальным свойством материи. Проявляются эти свойства только в микромире.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: