Общие принципы строения анализаторов

Всем анализаторным системам высших позвоночных животных и человека свойственны следующие основные принципы строения:

1. Многослойность, т. е. наличие нескольких слоев нервных клеток, первый из которых связан с рецепторными элементами, а последний — с нейронами ассоциативных отделов коры полушарий большого мозга. Между собой слои связаны проводящими путями, образованными аксонами их нейронов. Такое построение анализаторов обеспечивает возможность специализации разных слоев по переработке отдельных видов информации, что позволяет организму более быстро реагировать на простые сигналы, анализируемые уже на промежуточных уровнях. Кроме того, это создает условия для тонкого регулирования этих процессов путем влияний, исходящих из более высоких слоев данной системы и других отделов мозга.

2. Многоканальность анализаторных систем означает наличие в каждом из их слоев множества (обычно десятки тысяч, а иногда до миллионов) нервных элементов, связанных со множеством элементов следующего слоя, которые в свою очередь посылают нервные импульсы к элементам более высокого уровня. Наличие множества каналов обеспечивает анализаторам животных большую надежность и тонкость анализа.

3. Неодинаковое число элементов в соседних слоях, так называемых сенсорных «воронок». Примером может служить зрительная система, где слой фоторецепторов в каждой из двух сетчаток человека имеет 130 млн. элементов, а в слое выходных — ганглиозных клеток сетчатки — всего 1 млн. 250 тыс. нейронов. Это пример суживающейся «воронки». Однако на более высоких уровнях зрительной системы формируется расширяющаяся «воронка»: число нейронов в первичной проекционной области зрительной коры в тысячи раз больше, чем в подкорковом зрительном центре или на выходе сетчатки. В слуховом и ряде других анализаторов представлена только расширяющаяся «воронка» по направлению от рецепторов к коре.

Физиологический смысл явления суживающихся воронок сводится к уменьшению количества информации, передаваемой в мозг, а в расширяющихся «воронках» — к обеспечению более дробного и сложного анализа разных признаков сигналов.

4. Дифференциация анализаторов по вертикали и по горизонтали. Дифференциация по вертикали заключается в образовании отделов, состоящих обычно из того или иного числа слоев нервных элементов. Отдел — более крупное морфофункциональное образование, чем слой элементов. Каждый такой отдел (например, обонятельные луковицы, кохлеарные ядра или коленчатые тела) имеет определенную функцию. Различают обычно рецепторный, или периферический, отдел анализаторной системы, один или чаще несколько промежуточных отделов и корковый отдел анализатора.

Дифференциация анализаторных систем по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев.

Длительное время в физиологии анализаторов широко употреблялось понятие «сенсорные реле». Имелись в виду нейроны и их совокупность в промежуточных отделах сенсорных систем, осуществляющие будто бы простую переключательную или релейную функцию на пути сигналов из рецепторных образований к корковым центрам. Однако в последнее время в связи с выяснением важной и специфической роли подкорковых нервных центров в переработке (а не только передаче) сенсорной информации термин «реле» по отношению к ним не употребляется.

Понятие об анализаторах введено в физиологию И. П. Павловым в связи с учением о высшей нервной деятельности. Каждый анализатор состоит из трех отделов:

· Периферический или рецепторный отдел, который осуществляет восприятие энергии раздражителя и трансформацию ее в специфический процесс возбуждения.

· Проводниковый отдел, представленный афферентными нервами и подкорковыми центрами, он осуществляет передачу возникшего возбуждения в кору головного мозга.

· Центральный или корковый отдел анализатора, представленный соответствующими зонами коры головного мозга, где осуществляется высший анализ и синтез возбуждений и формирование соответствующего ощущения.

Роль анализаторов при формировании приспособительных реакций чрезвычайно велика и многообразна. Согласно концепции функциональной системы П. К. Анохина формирование любой приспособительной реакции осуществляется в несколько этапов. Анализаторы принимают непосредственное участие в формировании всех этапов функциональной системы. Они являются поставщиками афферентных посылок определенной модальности и различного функционального назначения, причем, одна и та же афферентация может быть обстановочной, пусковой, обратной и ориентировочной в зависимости от этапа формирования приспособительной деятельности.

Периферический (рецепторный) отдел анализаторов представлен рецепторами.

Его назначение — восприятие и первичный анализ изменений внешней и внутренней сред организма. В рецепторах происходит трансформация энергии раздражителя в нервный импульс, а также усиление сигнала за счет внутренней энергии метаболических процессов.

Основные свойства:

В деятельности каждого анализатора и его отделов независимо от характеристики раздражителей различают ряд общих свойств. Для периферического отдела анализаторов характерны следующие свойства.

1. Специфичность — способность воспринимать определенный, т. е. адекватный данному рецептору, раздражитель. Эта способность рецепторов сформировалась в процессе эволюции. Так, рецепторы зрительной сенсорной системы приспособлены к восприятию света, а слуховые рецепторы — звука и т.д. Та часть рецепторной поверхности, от которой сигнал получает одно афферентное волокно, называется его рецептивным полем. Рецептивные поля могут иметь различное количество рецепторных образований (от 2 до 30 и более), среди которых есть рецептор-лидер, и перекрывать друг друга. Последнее обеспечивает большую надежность выполнения функции и играет существенную роль в механизмах компенсации.

2. Высокая чувствительность — способность реагировать на очень малые по интенсивности параметры адекватного раздражителя. Например, для возбуждения фоторецепторов сетчатки глаза достаточно нескольких, а иногда и одного, квантов света. Обонятельные рецепторы информируют организм о появлении в атмосфере единичных молекул пахучих веществ.

3. Способность к ритмической генерации импульсов возбуждения в ответ на однократное действие раздражителя.

4. Способность к адаптации — т. е. способность приспосабливаться («привыкать») к постоянно действующему стимулу. Адаптация может выражаться в снижении активности рецептора и частоты генерации импульсов возбуждения, вплоть до полного его прекращения. В зависимости от скорости адаптации различают:

· быстроадаптирующиеся (тактильные);

· медленноадаптирующиеся (терморецепторы);

· неадаптирующиеся (вестибулярные и проприорецепторы).

Выделяют несколько видов адаптации:

Ø изменение возбудимости рецептора в сторону снижения — десенсибилизация;

Ø изменение возбудимости в сторону повышения — сенсибилизация.

Адаптация проявляется в снижении абсолютной чувствительности рецептора и в повышении дифференциальной чувствительности к стимулам, близким по силе к адаптируемому. Сенсибилизация проявляется в стойком повышении возбудимости, которое вызывается многократными действиями пороговых раздражителей, наносимых один за другим.

Процессы адаптации в рецепторах могут определяться внешними и внутренними факторами. В качестве внешнего фактора в механизме адаптации могут выступать свойства вспомогательных структур. Так, например, причиной быстрой адаптации телец Пачини являются свойства вспомогательных структур — капсулы рецептора, которые не пропускают к нервному окончанию статической составляющей механического раздражения, в то время как динамическая составляющая раздражителя проходит через оболочки капсулы, хотя и уменьшается по амплитуде. Это предположение подтверждается тем, что после удаления капсулы рецептор начинает генерировать рецепторный потенциал в течение длительного действия раздражителя.

Внутренние факторы механизма адаптации связаны с изменениями физико-химических процессов в самом рецепторе. Например, выявлено различие в наборе натриевых и калиевых каналов в быстро- и медленноадаптирующихся рецепторах. Важную роль в явлениях адаптации играют эфферентные влияния от нервных центров. При наличии тормозной эфферентной регуляции процессы адаптации в рецепторах ускоряются.

5. Функциональная мобильность. Анализаторные системы способны изменять свою деятельность путем изменения количества функционирующих рецепторов в зависимости от условий окружающей среды и функционального состояния организма. Например, количество функционирующих вкусовых рецепторов больше в состоянии голода, а после приема пищи их количество уменьшается. При снижении температуры окружающей среды количество холодовых рецепторов кожных покровов увеличивается.

6. Специализация рецепторов к определенным параметрам адекватного раздражителя. Рецепторы, входящие в состав периферического отдела анализатора, неоднородны по отношению к различным моментам действия раздражителя. Имеются рецепторы, которые возбуждаются только в момент включения раздражителя, другие- только в момент выключения раздражителя, а третьи реагируют в течение всего времени действия раздражителя. Кроме того, имеются рецепторы, реагирующие на изменение интенсивности раздражителя или на его перемещение и т. д.

7. Способность к элементарному первичному анализу. Благодаря связи между отдельными рецепторами периферического отдела, отражающими отдельные параметры раздражителя, осуществляется элементарный первичный анализ последнего. Деятельность рецепторов осуществляется не изолированно, а во взаимодействии, в связи с чем уже на рецепторном уровне осуществляется анализ раздражителя по разным его характеристикам (параметрам).

8. Кодирование информации. Информация о действии химических, механических раздражителей, имеющих разнообразную природу, преобразуется рецепторами в универсальные для мозга сигналы — нервные импульсы. Таким образом рецепторы кодируют информацию о среде, т. е. преобразуя сигналы, непонятные мозгу, в сигналы, понятные ему.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: