Хвильове рiвняння Шредiнгера

Подвiйнiсть властивостей мiкрочастинок – рiзка вiдмiннiсть їх вiд частинок класичної фiзики. Ця якiсна вiдмiннiсть вимагає описувати їх рух за iншими законами, нiж у класичнiй фiзицi. Хвильовi властивостi показують, що їх рух пiдкоряється законам розповсюдження хвиль де Бройля. Тому хвильовi процеси описуються хвильовим рiвнянням, яке для мiкрочастинок виведено Шредiнгером. Його сенс: рух у силовому полi мікрочастинки, що володiє потенцiальною енергiєю , пiдкоряється хвильовому рiвнянню виду:

. (5)

Рiшення (5) – хвильова функцiя . Рiвняння Шредiнгера задовольняється тiльки комплексними хвильовими функцiями. Тобто фiзичний смисл має не , а добуток її на комплексно спряжену з нею . Цей добуток дiйсний та пропорцiйний iмовiрностi знаходження мiкрочастинки у момент часу t у видiленому елементi об'єму :

. (6)

Властивостi за її фiзичним смислом:

1. Неперервна та має неперервну першу похідну.

2. Однозначна та кiнцева у всiх точках простору (тому що не може iмовiрнiсть знаходження мiкрочастинки у тому або iншому елементi мiнятися стрибкоподiбно вiд точки до точки або бути неоднозначною та нескiнченною).

Iнтеграл від (6), узятий по усьому простору , дорiвнює одиницi, тому що вiдбиває вірогідний факт – мікрочастинка є у цьому просторi:

. (7)

Цеумова нормiровки; функції , що складають (7), – нормованi функцiї.

Рiвняння Шредiнгера описує усю еволiцiю стану мiкрочастинки. Закон її руху визначається завданням у кожний момент часу у кожнiй точцi простору.

Амплiтудне рiвняння Шредiнгера. Потенцiйна енергiя у (5) – функцiя координат та часу. Але на практицi часто функцiя координат та не залежить вiд часу. Тому запишемо повну функцію у вигляді:

. (8)

За такої умови розглянемо о дновимiрний випадок, тобто рух мiкрочастинки повздовж осi . Рiвняння Шредiнгера (5) при цьому матиме вигляд:

. (9)

Вираз (8) стане:

. (10)

Пiдставимо (10) у (9), поділивши результат на (10), та зробимо розподіл змінних і :

.

Змiннi розподiленi: лiворуч – функцiя вiд x, праворуч – вiд t.

Рiвнiсть можлива помiж ними при умовi рiвностi кожної частини однiй постiйнiй величинi. Такою величиною є – повна енергiя частинки. Прирiвнюючи частини та перетворюючи рівність, одержимо:

, (11)

. (12)

Рiвняння (11) у загальному трьохвимірному випадку буде мати вигляд:

. (13)

Сума других похiдних будь-якої функцiї – оператор Лапласа, що позначається . Тодi (13) буде мати вигляд:

. (14)

Функцiя – амплiтуда хвильової функцiї , а рiвняння (11), (13) та (14) – амплітуднi рiвняння Шредiнгера (що не мiстять у собi часу).

Коли мікрочастинка рухається у обмеженому просторi, тодi рiшення рiвняння Шредiнгера вiдповiдають умовам однозначностi, кiнцевостi та неперервностi тiльки за умови суворого визначення значень : , якi звуться власними значеннями енергiї мiкрочастинки. Зв'язанi з ними хвильовi функцiї , звуться власними.

Роздивимося рiвняння (12). Iнтегруючи його, одержимо рiшення для одного iз власних значень енергiї :

. (15)

показує залежнiсть повної хвильової функцiї вiд часу. Iз (15) видно, що ця залежнiсть гармонiчна з частотою або .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: