Расчет параметров работ сетевого графика

Коды на­чальных событий предше­ствующих работ Код ра­боты Продолжи­тельность работы Сроки работы Резервы работ
Ранние Поздние полный свобод­ный
Начала работ Оконча­ния ра­бот Начала работ Оконча­ния ра­бот
                 
- 1-2              
  1-3              
  1-4              
  2-3              
  2-4              
  2-6              
1,2 3-7              
  3-8     2S        
1,2 4-5              
  5-6              
  5-9              
2,5 6-7              
  6-9              
3,6 7-9              
  8-9              

Четвертый этап - рассчитываются полные и свободные ре-

зервы работ, заполняются 8 и 9 графы таблицы.

В результате расчета получается информация о продолжи­тельности критического пути, критических работах (работы, имеющие нулевые резервы).

Алгоритм расчета временных параметров непосредственно на сетевой модели. Расчет модели сводится по существу к опреде­лению ранних и поздних сроков свершения всех событий наиболее простым и быстрым из ручных способов. Алгоритм может быть пред­ставлен следующей последовательностью итераций.

На первом этапе вычисляются ранние и поздние сроки наступ­ления всех событий ТР\ и Т/\ в такой очередности:

1) в каждом кружке, обозначающем событие, выделяются секто­ры для фиксации его номера и результатов вычислений (рис. 18);

2) для исходного события его ранний срок принимается равным нулю при отсутствии ограничений или заданному сроку наступления событий. Tj = 5 в рассматриваемом примере, что записано в левом секторе исходного события;

3) отмечаются меткой все работы, выходящие из исходного со­бытия (в примере 1-2 и 1-3);

4) находится событие, для которого все входящие работы отме­чены, а ранний срок свершения не найден (в примере это событие 2);

Рис. 18. Пример расчета временных параметров сетевой модели

В верхнем секторе - номер события i; в левом секторе - ранний срок свершения события; в правом секторе - поздний срок свершения события; в нижнем секторе - номер предшествующего события, через которое к данному ведет максимальный путь.

5) определяется ранний срок свершения события ТР- по формуле: Tjp = max {Т/ + TiJ.

(в примере Т2Р = TiP' + Tl2 = 5+15 = 20).

6) в нижнем секторе кружка, означающего событие, для которого рассчитан ранний срок свершения, указывается номер предшествую­щего события, через которые к данному ведет максимальный путь (в примере это событие 1);

Аналогично находятся ранние сроки свершения остальных собы­тий, пока не будет рассчитан ранний срок свершения завершающего события.

7) для завершающего события поздний срок свершения события принимается равным его раннему сроку свершения или заданному ус­ловному сроку, если последний установлен. Пусть в нашем примере директивный срок равен 48;

8) отмечаются второй меткой все работы, входящие в завер­шающее событие (в примере это работы 5-6, 4-6, 3-6);

9) находится событие i, для которого все выходящие работы от­мечены второй меткой, а Т|П не найдено (в примере это событие 5);

10) определяется поздний срок свершения для найденного собы­тия Т|П по формуле:

Tin = min (Tjn- -tH).

В примере:

Г Т6-Ц-б] Г 48-12 = 36]

T4n = minj I Т4П = mirrj >= 32

I Т5 -14.5 J. 32 - 0 = 32 J

Поскольку в нижнем секторе отмечен номер предшествующего события, через которое к данному ведет максимальный путь, отпадает необходимость расчета поздних сроков всех входящих работ. Так, поздний срок совершения события 4 будет определяться поздним на­чалом работы 4-5 и равен:

Т4П = 32 - 0 = 32.

11) отмечаются второй меткой работы, входящие в событие, для которого рассчитан поздний срок свершения (в примере работы 2-5, 4-5) и процедура поиска и расчета повторяется. Аналогичным образом определяются поздние сроки свершения всех событий.

На втором этапе определяются полные и свободные резервы времени всех работ по следующим формулам:

Rj.j = Т]П- — TjP' — tj.j,

Результаты расчета записываются в сложных прямоугольниках под стрелками, обозначающими работы.

При наличии работ, имеющих отрицательные резервы, необхо­димы меры, которые позволили бы форсировать их выполнение.

При переходе к моделям со многими исходными и целевыми со­бытиями и ограничениями на моменты наступления контрольных со­бытий необходимо учитывать некоторые существенные отличия в ме­тодах определения временных параметров. Ранние сроки выполнения работ, свершения событий определяются не только топологией и про­должительностью работ, но и моментами наступления исходных со­бытий и ограничениями типа "не раньше", установленными для неко­торых промежуточных событий. Аналогично на поздние сроки влияют, директивные сроки наступления целевых событий и ограничения "не позже" на моменты наступления некоторых промежуточных событий.

Эти особенности и ограничения усложняют процедуру расчета временных параметров модели; возрастает опасность отклонения от заданных сроков и отсутствия хотя бы одного допустимого варианта выполнения программы.

К расчету временных параметров работ многоцелевой модели с ограничениями по контрольным событиям может быть применен алго­ритм расчета временных параметров непосредственно на сетевой мо­дели, описанный выше, со следующими корректировками:

- итерации 2) и 3) выполняются для всех исходных событий;

- при выполнении итерации 5) для событий, имеющих контроль­ные ограничения снизу (dj), после вычисления раннего срока сверше­ния события проверяется выполнение условия: Tj > dj.

Если это условие не выполняется, то принимается: TjP=dj;

- при выполнении итерации 10) для целевых и контрольных со­бытий, имеющих контрольные ограничения сверху (Dj), после вычис­ления позднего срока проверяется выполнение условия: Т(п < Df.

Если это условие не выполняется, то принимается: "Пп = Dj.


Вопрос 34 Моделирование как метод исследования. Принципы моделирования

Моделирование широко применяется в практике при выполнении всех этапов системного анализа. Это дает возможность получить об­ширную информацию о различных сторонах функционирования сис­темы в целом и ее отдельных элементов, исследовать устойчивость поведения системы под воздействием внешних и внутренних возму­щений, исследовать зависимость конечных результатов работы сис­темы от ее характеристик и найти оптимальный вариант. Моделирование систем - это метод, с помощью которого, варь­ируя в эксперименте потоки материалов или предметов через опера­ции или процессы, можно определить влияние изменений различных переменных в системе. Моделирование представляет собой средство опытной проверки идей и представлений в условиях, которые невоз­можно было бы создать для реального эксперимента, учитывая свя­занные с этим затраты, время и риск. Это метод накопления опыта и обучения, результатом которого может быть разработка новой и луч­шей системы, оценка нескольких альтернативных систем или нахож­дение лучшего способа функционирования заданной системы. Моде­лирование по существу своему является заменой практического опы­та, который иначе был бы слишком дорог, продолжителен и рискован. Цели моделирования систем заключаются в том, чтобы расши­рить понимание систем и их сущность, оценить новые идеи и понятия, выразить количественно, как можно большее число факторов и зави­симостей, дать возможность исследователям сосредоточить внимание на задачах, не поддающихся формализации, которые связаны с рис­ком, и обучить персонал выполнению новой операции.

Достижение целей моделирования создает следующие преиму­щества:

1. Система лучше понимается теми, кто принимает участие в обеспечении действенности и эффективности ее функционирования.

2. Результатом моделирования систем является более быстрое одобрение предполагаемых изменений, поскольку руководители -практики имеют реальную возможность участвовать в эксперимен­тальной проверке идей.

3. Модели могут стимулировать разработку идей, которые иначе остались бы незамеченными.

4. Моделирование способствует комплексному анализу. Имити­рующая модель не позволяет оставить хотя бы один вопрос без выяс­нения и ответа. В результате моделирования систем рушатся личные и организационные барьеры, которые в крупных организациях, склон­ны плодится как "священные коровы". Моделирование систем способ­ствует углублению анализа.

5. Для описания переменных факторов с помощью моделирова­ния не нужно знать значений их средних, медиан и мод. Можно ис­пользовать весь диапазон значений.

Вместе с тем следует постоянно помнить о сложностях модели­рования систем. Наиболее часто встречающаяся проблема - неспо­собность, как разработчиков, так и пользователей в полной мере представлять себе, что во всякой системе, особенно социально-экономической, содержится много предположений и очень мало де­терминированных связей. Поэтому ценность модели зависит от каче­ства отработанных в ней предположений.

Необходимо помнить, что моделирование систем представляет собой орудие исследования, и никто не может заранее предсказать, какими методами выразить лучшее понимание системы. Суждение от­носительно целесообразности усилий, направленных на создание мо­дели системы, должно основываться на рассматриваемой системе и ясном представлении, что в некоторых случаях эти усилия могут дать лишь незначительный результат.

Процесс моделирования обязательно включает и построение аб­стракций и умозаключения по аналогии и конструирование новых сис­тем. Основная особенность моделирования в том, что это метод опо­средованного познания с помощью объектов заменителей. Модель выступает как своеобразный инструмент познания, который исследо­ватель ставит между собой и объектом и с помощью которого изучает интересующий его объект.

Первый этап моделирования - построение модели. Он пред­полагает наличие некоторых знаний об объекте - оригинале. На этом этапе важен вопрос о необходимой и достаточной мере сходства ори­гинала и модели. При разработке модели должны соблюдаться следующие прин­ципы:

1. Принцип компромисса между ожидаемой точностью резуль­татов моделирования и сложностью модели.

2. Принцип баланса, точности требует соразмерности систе­матической погрешности моделирования и случайной погрешности в задании параметров описания. Этот принцип устанавливает требова­ние соответствия между точностью исходных данных и точностью мо­дели, между точностью отдельных элементов модели, между система­тической погрешностью модели и случайной погрешностью при интер­претации и усреднении результатов.

3. Принцип разнообразия элементов модели, в соответствии с которым количество элементов должно быть достаточным для прове­дения конкретных исследований

4. Принцип наглядности модели трактует, что при прочих рав­ных условиях модель, которая привычна, удобна, построена на обще­принятых терминах, обеспечивает, как правило, более значительные результаты, чем менее удобная и наглядная.

5. Принцип блочного представления модели. Для его реали­зации следует соблюдать следующие правила:

- обмен информацией между блоками должен быть минималь­ным;

- блок модели, мало влияющей на интерпретацию результатов моделирования, является несущественным и подлежащим удалению;

- блок модели, осуществляющий взаимодействие с исследуемой частью системы, можно заменить множеством упрощенных эквивален­тов, не зависящих от исследуемой части, при этом моделирование проводится в нескольких вариантах по каждому упрощенному эквива­ленту;

- при упрощении блока, воздействующего на исследуемую часть системы, следует рассмотреть возможность прямого упрощения замк­нутого контура без разрыва обратной связи. Для этого блок заменяют вероятным эквивалентом с оценкой его статистических характеристик, полученных путем автономного исследования упрощенного блока;

- замена блока воздействиями, наихудшими по отношению к ис­следуемой части системы

Второй этап моделирования - изучение модели. Здесь мо­дель выступает как состоятельный объект исследования. Одной из форм такого исследования является проведение экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является совокупность знаний о модели.

Третий этап моделирования - перенос знаний с модели на оригинал. Этот процесс проводится по определенным правилам. Зна­ния о модели должны быть скорректированы с учетом тех свойств объекта - оригинала, которые не нашли отражения или были измене­ны при построении модели.

Четвертый этап моделирования -практическая проверка по­лученных с помощью модели знаний и их использование при построении обобщенной теории объекта, его преобразования или управления им. В итоге происходит возвращение к проблематике реального объекта.

Моделирование представляет собой циклический процесс. Это оз­начает, что за первым четырехэтапным циклом может последовать вто­рой, третий и т.д. При этом знания об исследуемом объекте расширяют­ся, а исходная модель постепенно совершенствуются. Недостатки, об­наруженные после первого цикла моделирования, обусловленные ма­лым знанием объекта и ошибками в построении модели, можно испра­вить в последующих циклах. Таким образом, в методологии моделиро­вания заложены большие возможности саморазвития.


Вопрос 35 Понятие и классификация моделей

Моделирование построено на использовании разнообразных мо­делей, что обусловливает необходимость определения ее понятия и классификацию моделей, применяемых в системном анализе.

Модель - это такой материальный или мысленно представляе­мый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

По своей природе модели делятся на физические, символиче­ские и смешанные.

Физические модели воплощены в каких-либо материальных объ­ектах, имеющих естественное или искусственное происхождение (ото­бранные в природе или созданные человеком для целей исследова­ния), и подразделяются на модели подобия и аналоговые. Первые ха­рактеризуются масштабными изменениями, выбираемыми в соответст­вии с критериями подобия, вторые - основаны на известных аналогиях между протеканием процессов в различных системах. Примером анало­говой модели является экономический эксперимент, когда результаты экспериментирования на одном или нескольких предприятиях перено­сятся на совокупность объектов близкой экономической природы.

Символические модели характеризуются тем, что параметры ре­ального объекта и отношения между ними представлены символами: семантическими (словами), математическими, логическими. Класс символических моделей весьма широк. Наряду со словесными описа­ниями функционирования объектов - сценариями - сюда также отно­сятся схематические модели: графики и блок-схемы, логические блок-схемы (например, алгоритмы программ) и таблицы решений, номо­граммы, а также математические описания - математические модели.

Смешанные модели применяются тогда, когда часть элементов и процессов не удается описать символами, и они моделируются физи­чески. К ним относятся также человеко-машинные модели, в которых имеется программа, реализующая на ЭВМ некоторую математическую модель, плюс человек, принимающий решение за счет обмена инфор­мацией с ней.

По целевому назначению различают модели структуры, функ­ционирования и стоимостные (модели расхода ресурсов).

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

- канонические модели, характеризующие взаимодействие объ­екта с окружением через входы и выходы:

- модели внутренней структуры, характеризующие состав компо­нентов объекта и связи между ними;

- модели иерархической структуры (дерево системы), в которых объект расчленяется на элементы более низкого уровня, действия ко­торых подчинены интересам целого.

Модели структуры обычно представлены в виде блок-схем, реже графов и матриц связей.

Модели функционирования включают широкий спектр симво­лических моделей:

- модели жизненного цикла системы, описывающие процессы существования систем от зарождения замысла их создания до пре­кращения функционирования;

- модели операций, выполняемых объектами и представляющих описание взаимосвязанной совокупности процессов функционирова­ния отдельных элементов объекта при реализации тех или иных функ­ций объектов;

- информационные модели, отображающие во взаимосвязи ис­точники и потребителей информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

- процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных опера­ций, в частности, реализации процедур принятия управленческих ре­шений;

- временные модели, описывающие процедуру функционирова­ния объектов во времени и распределение ресурса "время" по отдель­ным компонентам объекта.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны. Их со­вместное использование позволяет проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономиче­ским критериям.

В зависимости от степени формализации связей между фак­торами различают аналитические и алгоритмические модели.

Аналитические модели предполагают запись математической модели в виде алгебраических уравнений и неравенств, не имеющих разветвлений вычислительного процесса, при определении значений любых переменных, состояния модели, целевой функции и уравнений связи.

Алгоритмические модели описывают критерии и ограничения математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. Они приме­няются, когда модель сложной системы гораздо легче построить в ви­де алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логиче­ских условий - разветвлений хода течения процесса. Тематическое описание для элементов может быть очень простым, однако взаимо­действие большого количества простых, по математическому описа­нию, элементов позволяет описать сложность системы.

В зависимости от наличия случайных факторов различают стохастические и детерминированные модели.

В детерминированных моделях ни целевая функция, ни уравне­ния связи не содержат случайных факторов и для данного множества выходных значений модели, может быть получен один-единственный результат.

Для стохастических моделей характерно наличие факторов, ко­торые имеют вероятностную природу и характеризуются какими-либо законами распределения, а среди функций могут быть и случайные. Значения выходных характеристик в таких моделях могут быть пред­сказаны только в вероятностном смысле. Реализация таких моделей в большинстве случаев осуществляется методами имитационного мо­делирования.

В зависимости от фактора времени различают динамические и статические модели.

Модели, в которых входные факторы, а, следовательно, и ре­зультаты моделирования явно зависят от времени, называются дина­мическими, а модели, в которых зависимость от времени либо отсут­ствует совсем, либо проявляется слабо или неясно, называются ста­тическими.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: