Задачи оптимального проектирования

В процессе решения задачи всегда появляется несколько вариантов. Это происходит и случайно, в силу неоднозначности и неопределенности процесса решения, и целенаправленно, как основа поиска лучшего результата. Но задача, и особенно техническая, считается решенной тогда, когда будет сделан выбор окончательного, единственного варианта. Только такая деятельность считается продуктивной.

Рекомендуемые к исполнению решения должны быть:

· обоснованными,

· своевременными,

· директивными (обязательными к исполнению),

· правомочными,

· непротиворечивыми (согласованными с другими, в том числе и ранее принятыми).

Выбираемое решение всегда взаимосвязано с конкретной личностью (индивидуальное решение) или группой людей (коллективное решение). Человек, который

- имеет право выбирать окончательное решение,

- несет за него ответственность,

- заинтересован в решении проблемы,

называется лицом, принимающим решение (ЛИР). Принятие решения в значительной степени носит социальный характер, поскольку нацелено на удовлетворение общественных потребностей.

Выбор возможен одним из следующих способов:

· случайным образом (способом необъяснимым и независящим от условий задачи),

· волевым образом (выбор не обосновывается и индивидуален, определяется чертами характера ЛИР),

· критериальным образом (выбор имеет обоснование, доступное пониманию другими людьми).

· В проектировании предпочтителен критериальный выбор: разработчик должен уметь аргументировано доказать верность и эффективность полученных результатов.

Ранее критериальный подход больше базировался на опыте (экспертных оценках), на обосновывающих верность рассуждениях и умозаключениях (логических построениях). В последнее время к выводам стали предъявлять требования четкости и точности. Появилась новая наука, теория исследования операций, изучающая проблемы, связанные с принятием решений (см. работы Е.С. Вентцель). А задачи, решаемые на основе ее принципов, стали называть задачами оптимального проектирования.

Как уже отмечалось ранее, реальный объект характеризуется огромным числом параметров, и для упрощения его описания выделяют принцип действия, структурный и параметрический уровни. Аналогично, задачи оптимального проектирования подразделяют на задачи выбора оптимального принципа действия, структурной и параметрической оптимизации.

Разработка методов выбора оптимального принципа действия пока относится к задачам перспективных исследований: еще не известны такие методы и критерии, которые бы позволили на основе ограниченного числа данных, которое соответствует этому уровню описания объекта, дать полную и точную картину его поведения в реальных условиях и позволить выбрать предпочтительный принцип действия.

Решение задачи структурной оптимизации более реально. В ее основе могут лежать представление структуры в виде графов, сравнительный анализ структур на основе ограниченного числа структурных параметров, объединение исследуемых структур в одну, обобщенную. Но неполнота учитываемых данных не позволяет однозначно указать на лучший вариант, и выводы носят рекомендательно-оценочный характер.

Наиболее разработаны математические методы параметрической оптимизации, т.е. методы поиска оптимальных параметров объекта в рамках заданных его принципа действия и структуры.

Основой для поиска оптимального варианта служат правила (критерии) оптимальности, а мерой предпочтения — показатели качества. Показатели могут иметь либо количественную оценку (формализованные показатели), либо качественную характеристику (неформализованные показатели). В задачах параметрической оптимизации используют формализованные показатели, которые также называют критериями оптимизации (критериями эффективности объекта). Но стоит помнить, что назначение количества и типов критериев осуществляется человеком, что придает им эвристический характер. А с другой стороны, критерии определяют конечный вид проектируемого объекта, и, следовательно, случайный их выбор ведет к случайным и неэффективным результатам (хотя эти результаты могут быть получены на основе многократно проверенных и общепринятых методик).

Для удобства и однозначности восприятия критерии Кi (где i =1,..., m и m — число критериев) нормируют, т.е. обычно приводят к следующему виду:

· Кi ≥ 0;

· критерии Кi убывают с улучшением решения, с ростом качества проектируемого объекта (встречается и обратное требование);

· предпочтительно критерии приводить к безразмерному виду;

· наилучшее значение критерия равно нулю. Решения, у которого все критерии нулевые (Кi = 0), соответствует ИКР.

Диапазон изменения параметров {х} объекта всегда ограничен их физическим смыслом, материальными ресурсами, условиями задачи (например, положительность величин геометрических размеров, изменение КПД от 0 до 1, стандартные значения шага резьбы и т.п.). Поэтому реальные варианты решений Pj (где j=1,..., n и n — число возможных решений) занимают некоторую конечную допустимую область в пространстве их параметров Мд(х). Однако огромное число параметров, которое характеризует любой объект, делает сложной для восприятия и ненаглядной работу в таком пространстве. Чаще анализ и принятие решений ведут в пространстве критериев Мд(к), являющемся частным случаем пространства параметров.

На рис. 7а показан пример множества из пяти допустимых решений Мд(к)= { PA, PB, PC, PD, Pe }= {Pj} в пространстве двух критериев {К1, К2} (вектора решений, за исключением PB, на рисунке не показаны). Каждому решению Pj соответствует свой набор критериев, т.е. Pj={Кij}. Множество допустимых решений может быть дискретным (рис. 7а), либо непрерывным (рис. 7б).

Рис.7. Множество допустимых решений Мд (к) в пространстве критериев: а — дискретное, б — непрерывное

Характеризуя объект, сложно выбрать такой один критерий, который бы обеспечил всю полноту требований. А стремление к всеобъемлющему решению и назначение большого числа критериев сильно усложняет задачу. Поэтому в разных задачах количество критериев может быть различным. Задачи однокритериальной оптимизации называют скалярными, а многокритериальной — векторной оптимизации. Последнее название объясняется тем, что решение можно изобразить как бы вектором P в пространстве критериев.

Распространен принцип сведения решения задачи оптимального проектирования объекта-системы к оптимизации его подсистем. Однако наличие нелинейных связей между подсистемами не гарантирует оптимальности всей системы.

Рассмотрим основные методы принятия решений в задачах параметрической оптимизации.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: