Точность решения задачи

Представляя расчетную схему сооружения в виде конечно-элементной модели, пользователь всегда стремится достичь компромисса между двумя противоречивыми желаниями: получить как можно более точное решение задачи и обусловить приемлемое время счета. Желательно также получить обозримый объем результатов. Для достижения такого компромисса необходимо уметь оценивать оба указанных фактора. Так, время решения задачи легко прогнозируется по количеству узлов, элементов, загружений, а также быстродействию компьютера. ПК ЛИРА автоматически дает прогноз времени решения задачи для всех этапов расчета. Однако оценка точности решения задачи является вопросом очень сложным, так как зависит от многих слабо формулируемых факторов, таких как густота сетки, физико-механические свойства рабочей модели, геометрия конечных элементов, свойство конечных элементов:

· густота сетки – с одной стороны, сгущение сетки повышает точность, с другой стороны, неограниченное сгущение может повлечь слабую обусловленность матрицы канонических уравнений и потерю точности;

· физико-механические свойства расчетной модели – расчетная схема может быть близка к геометрически изменяемой, содержать элементы с сильно различающимися жесткостями, что также влечет потерю точности;

· геометрия конечных элементов – если стороны элементов сильно различаются по длине, то это приведет к плохой обусловленности матрицы накопленных уравнений и также к потере точности;

· свойство конечных элементов – использование высокоточных элементов часто приводит к более точному решению, чем использование простых элементов на значительно более густой сетке.

Назначение сетки надо проводить на основе многих факторов. Так, например, густоту сетки предпочтительно увеличивать только в местах предполагаемого большого градиента напряжений (входящие узлы, места сосредоточенных нагрузок и т.п.). Кроме того, знание свойств конечных элементов также часто помогает рационально построить конечную модель. Так, например, на рис 4.1.а конечно-элементная модель более рациональна, чем на рис 4.1.б. Дело в том, что при моделировании перемычки, работа которой близка к балочной схеме, более предпочтительно производить ее разбивку по длине, т.к. прямоугольный конечный элемент балки-стенки имеет полилинейный закон аппроксимации функций, что автоматически моделирует закон плоских сечений, даже если по высоте балки расположен только один элемент.

а) б)

Рисунок 4.1

Особенно тщательно необходимо подходить к построению конечно-элементной модели в том случае, если схема рассчитываемого сооружения обладает свойствами, провоцирующими неустойчивый счет. Это относится к пологим мембранам, к конструкциям с гибкими включениями, с элементами, имеющими малые размеры, но большую жесткость.

Рекомендуется стремиться к сокращению размерности решаемой задачи. В какой-то степени может помочь применение суперэлементов. В этом случае пользователь, объявляя суперэлементом небольшой фрагмент, включающий неблагополучные элементы, может несколько сгладить их негативное влияние.

Геометрия конечных элементов также оказывает существенное влияние на точность решения задачи. Рекомендуется стремиться к тому, чтобы элементы были близки к равносторонним.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: