Краткая теория и методика выполнения работы

Лабораторная работа № 7

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ВОЗДУХА

КАПИЛЛЯРНЫМ МЕТОДОМ

Цель работы: изучение внутреннего трения воздуха, определение коэффициента динамической вязкости и длины свободного пробега молекул воздуха.

Оборудование: экспериментальная установка ФПТ1-1.

Краткая теория и методика выполнения работы

Явления переноса – это процессы установления равновесия в термодинамической системе путем переноса массы (диффузия), энергии (теплопроводность) и импульса молекул (внутреннее трение или вязкость). Все эти явления обусловлены тепловым движением молекул. При явлении вязкости наблюдается перенос импульса от молекул из слоев потока, которые двигаются быстрее, к молекулам из более медленных слоев.

В случае протекания жидкости или газа в прямолинейной цилиндрической трубе (капилляре) при малых скоростях потока течение является ламинарным, т.е. поток газа движется отдельными слоями, которые не смешиваются между собой. В этом случае слои представляют собой совокупность бесконечно тонких слоев цилиндрической формы, вложенных одна в другую и имеющих общую ось, совпадающую с осью трубы.

Вследствие хаотического теплового движения молекулы непрерывно переходят из слоя в слой и при столкновении с другими молекулами обмениваются импульсами направленного движения. При переходе из слоя с большей скоростью направленного движения в слой с меньшей скоростью молекулы «более быстрого» слоя передают часть своего импульса молекулам «более медленного» слоя. В «более быстрый» слой переходят молекулы с меньшим импульсом. В результате первый слой тормозится, а второй – ускоряется.

Опыт показывает, что импульс , который передается от слоя к слою через поверхность , пропорционален градиенту скорости , площади поверхности и времени переноса :

.

Знак минус отражает тот факт, что градиент скорости имеет направление противоположное направлению вектора изменения импульса . В результате между слоями возникает сила внутреннего трения, которая описывается формулой Ньютона:

, (7.1)

где – коэффициент динамической вязкости. Для идеального газа:

,

здесь – плотность газа; – средняя длина свободного пробега молекул; – средняя скорость теплового движения молекул, ; – молярная масса газа, – универсальная газовая постоянная, – температура газа.

Выделим в капилляре воображаемый цилиндрический объем газа радиусом и длиной , как показано на рис. 7.2 ( – радиус капилляра). Обозначим давления на его торцах и .. При установившемся течении сила давления на цилиндр уравновесится силой внутреннего трения , которая действует на боковую поверхность цилиндра со стороны внешних слоев газа:

. (7.2)

Сила внутреннего трения определяется по формуле Ньютона (7.1). Учитывая, что и скорость уменьшается при удалении от оси трубы, т.е. , можно записать:

. (7.3)

В этом случае условие стационарности (7.2) запишется в виде:

. (7.4)

Интегрируя это выражение, получим:

,

где – постоянная интегрирования, которая определяется граничными условиями задачи.

При скорость газа должна обратиться в нуль, поскольку сила внутреннего трения о стенку капилляра тормозит смежный с ней слой газа. Тогда:

. (7.5)

Подсчитаем объемный расход газа , т.е. объем, который протекает за единицу времени через поперечное сечение трубы. Через кольцевую площадку с внутренним радиусом и внешним ежесекундно протекает объем газа . Тогда:

или

. (7.6)

Формулу (7.6), которая называется формулой Пуазейля, можно использовать для экспериментального определения коэффициента динамической вязкости газа.

Формула Пуазейля была получена в предположении ламинарного течения газа или жидкости. Однако с увеличением скорости потока движение становится турбулентным и слои смешиваются. При турбулентном движении скорость в каждой точке меняет свое значение и направление, сохраняется только среднее значение скорости.

Характер движения жидкости или газа в трубе определяется числом Рейнольдса:

, (7.7)

где – средняя скорость потока; – плотность жидкости или газа, – радиус трубы.

В гладких цилиндрических каналах переход от ламинарного течения к турбулентному происходит при . Поэтому в случае использования формулы Пуазейля необходимо обеспечить выполнение условия . Кроме того, эксперимент необходимо проводить таким образом, чтобы сжимаемостью газа можно было пренебречь. Это возможно тогда, когда перепад давлений вдоль капилляра значительно меньше самого давления. В данной установке давление газа несколько больше атмосферного (103 см водяного столба), а перепад давлений порядка 10 см водяного столба, т.е. приблизительно 1% от атмосферного давления.

Формула (7.6) справедлива для участка трубы, в котором установилось постоянное течение, а закон распределения скоростей вдоль сечения трубы от центра к стенкам является квадратичным и описывается формулой (7.5). Такое течение устанавливается на некотором расстоянии от входа в капилляр, поэтому для достижения достаточной точности эксперимента необходимо выполнение условия , где – радиус, а – длина капилляра.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: