Краткая теория и методика выполнения работы

Для увеличения температуры тела к нему необходимо подвести некоторое количество тепла. Экспериментально установлено, что для большинства тел изменение их температуры пропорционально величине подводимого тепла. Коэффициент пропорциональности называется теплоёмкостью тела:

, (9.1)

где – подведенное тепло, – теплоемкость, – изменение температуры.

Если сравнить два тела, изготовленные из одного материала, массы которых отличаются в два раза, то очевидно, что для нагрева более тяжелого тела потребуется в два раза больше энергии, чем для нагрева более легкого тела до той же температуры. Поэтому, наряду с коэффициентом теплоёмкости, рассматривается коэффициент удельной теплоёмкости, который характеризует вещество, из которого изготовлено тело, и равен теплоёмкости единицы массы этого вещества:

, (9.2)

где – удельная теплоёмкость вещества, – теплоёмкость тела, изготовленного из этого вещества, – масса тела. Заметим, что теплоёмкость является величиной аддитивной. То есть, если совместно нагревать два тела, теплоёмкости которых равны и , то теплоёмкость тела, сложенного из этих двух, будет равна: .

Из теории идеального газа известно, что средняя кинетическая энергия одноатомных молекул: , где - постоянная Больцмана. Среднее значение полной энергии частицы при колебательном движении в кристаллической решетке: . Полную внутреннюю энергию одного моля вещества твёрдого тела получим, умножив среднюю энергию одной частицы на число независимо колеблющихся частиц, содержащихся в одном моле, т. е. на число Авогадро:

, (9.3)

где Дж/(моль×К) - универсальная газовая постоянная.

Для твёрдых тел, вследствие их малого коэффициента теплового расширения, теплоёмкости при постоянном давлении и постоянном объёме практически не различаются. Поэтому с учетом формулы (10.3), молярная теплоёмкость твёрдого тела будет определяться как:

. (9.4)

Молярная теплоёмкость может быть представлена как произведение молярной массы на величину удельной теплоёмкости : . Подставляя численное значение универсальной газовой постоянной, получим: Дж/(моль×К). Равенство (9.4), называемое законом Дюлонга и Пти, выполняется с довольно хорошим приближением для многих веществ при комнатной температуре и позволяет рассчитать по известным значениям удельной теплоёмкости молярные массы простых кристаллических твёрдых тел.

Со снижением температуры теплоёмкость твёрдых тел уменьшается, приближаясь к нулю при . Вблизи абсолютного нуля молярная теплоёмкость всех тел пропорциональна , и только при достаточно высокой, характерной для каждого вещества, температуре начинает выполняться равенство (9.4). Эти особенности теплоёмкостей твёрдых тел при низких температурах можно объяснить с помощью квантовой теории Энштейна и Дебая.

Для экспериментального определения теплоёмкости исследуемое тело помещается в калориметр. Если температуру калориметра с исследуемым образцом очень медленно увеличивать от начальной (комнатной температуры) до некоторой температуры , причем , то энергия электрического тока будет расходоваться на нагревание образца и калориметра :

, (9.5)

где и - сила тока и напряжение нагревателя; - время нагревания; и - массы калориметра и исследуемого образца; и - удельные теплоёмкости калориметра и исследуемого образца; - потери тепла в теплоизоляцию калориметра и в окружающее пространство.

Для исключения из уравнения (9.5) количества теплоты, израсходованной на нагрев калориметра и потери теплоты в окружающее пространство, необходимо при той же мощности нагревателя нагреть пустой калориметр (без образца) от начальной температуры на ту же разность температур . Потери тепла в обоих случаях будут практически одинаковыми и малыми, если температура защитного кожуха в обоих случаях постоянна и равна комнатной:

. (9.6)

Из уравнений (9.5) и (9.6) следует:

. (9.7)

Уравнение (9.7) может быть использовано для экспериментального определения удельной теплоёмкости исследуемого материала. Изменяя температуру калориметра, необходимо построить график зависимости времени нагрева от изменения температуры исследуемого образца , по угловому коэффициенту которого равного можно определить удельную теплоёмкость образца .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: