Несимметричные режимы работы синхронных генераторов

Работа генератора при несимметричной нагрузке. Наличие однофазных нагрузок (осветительной сети, тяговых трансформаторов электрифицированных железных дорог и т.п.) вызывает несимметрию фазных токов синхронных генераторов. Анализ несимметричных режимов, как и для трехфазных трансформаторов, производится методом симметричных составляющих, при котором трехфазная несимметричная система токов IА, IB и IC разлагается на системы токов прямой, обратной и нулевой последовательностей.

Система токов прямой последовательности İA1, İB1, İC1 создает в трехфазной синхронной машине м.д.с. якоря, вращающуюся синхронно с ротором, т.е. неподвижную относительно обмоток ротора. Этот режим подробно рассмотрен в предшествующих параграфах настоящей главы. Индуктивное сопротивление фазы для токов прямой последовательности х пр сн.

Система токов обратной последовательности İА 2, İВ 2, İC2 создает м.д.с. якоря, вращающуюся в сторону, противоположную вращению ротора, так как имеет место чередование максимумов тока в фазах, обратное по отношению к токам прямой последовательности. Следовательно, магнитное поле токов обратной последовательности пересекает обмотки ротора с двойной частотой и индуктирует в обмотке возбуждения и демпферной обмотке э. д. с, имеющую в два раза большую частоту, чем э. д. с. обмотки якоря. Наличие э.д. с. и токов двойной частоты в обмотках ротора заставляет при расчете токов обратной последовательности пользоваться сверхпереходными (или переходными) индуктивными сопротивлениями. Другими словами, для потоков обратной последовательности короткозамкнутая демпферная клетка играет ту же роль, что и короткозамкнутая обмотка ротора асинхронной машины по отношению к вращающемуся потоку.

Поток обратной последовательности равномерно пересекает то продольную, то поперечную ось ротора. Вследствие этого среднее значение индуктивного сопротивления машины для токов обратной последовательности можно принять равным

. (1.60)

Если демпферная обмотка расположена по всей окружности якоря, то можно считать, что

. (1.61)

Сопротивления для токов обратной последовательности можно получить экспериментально, если включить синхронную машину в сеть и вращать ротор с синхронной частотой против направления вращения поля.

Токи двойной частоты, возникающие в демпферных обмотках и массивном роторе, вызывают дополнительные потери, из-за которых может возникнуть опасный нагрев ротора и снижение к. п. д. машины. Увеличение сечения стержней демпферной обмотки с целью снижения активного сопротивления и потерь не всегда дает положительный эффект, так как при двойной частоте сильно сказывается эффект вытеснения тока. Взаимодействие м. д. с. возбуждения ротора и потока обратной последовательности статора создает знакопеременный колебательный момент, вызывающий вибрацию машины и шум.

Система токов нулевой последовательности IА 0, IB 0, IC 0 создает во всех трех фазах м. д. с, совпадающие по времени, так как

İA 0= İВ 0 = İC 0 (1.62)

На рис. 1.61 показаны магнитные поля, образуемые этими токами в каждой из фаз якоря для простейшего случая сосредоточенной обмотки. Легко заметить, что для основной гармоники магнитный поток в воздушном зазоре от токов нулевой последовательности равен нулю. Вследствие этого токи нулевой последовательности могут создавать только потоки рассеяния Фσ0 и пульсирующие потоки гармоник, кратных трем.

Рис. 1.61 – Потоки рассеяния, образуемые токами нулевой последовательности в обмотках якоря

При диаметральной обмотке якоря потоки рассеяния токов нулевой последовательности замыкаются так же, как потоки рассеяния для токов прямой последовательности, а поэтому приблизительно равны и соответствующие индуктивные сопротивления х 0= xsa. При укорочении шага обмотки индуктивное сопротивление уменьшается и достигает минимума при шаге обмотки, равном 2/3 полюсного деления, так как в этом случае во всех пазах проводники нижнего и верхнего слоев принадлежат разным фазам.

Следовательно, при y = (2/3)τ полный ток нулевой последовательности каждого из пазов будет равен нулю, а индуктивное сопротивление будет определяться потоком лобовых частей. При рекомендуемом для синхронных машин шаге y = 0,8 τ индуктивное сопротивление х 0уменьшается почти в три раза по сравнению с его значением при диаметральной обмотке. Таким образом, обычно 0,3xsa < х 0 < xsa.

Экспериментально величину х 0можно определить, если включить все фазы обмотки якоря последовательно и присоединить их к источнику однофазного переменного тока. Обмотку возбуждения при этом нужно замкнуть накоротко, а ротор привести во вращение с номинальной частотой. В этом опыте U = 3I 0 x 0, откуда x 0= U/ (3I 0).Наличие короткозамкнутой обмотки возбуждения на роторе уменьшает дифференциальный поток рассеяния, а вращение ротора выравнивает фазные сопротивления, которые при неподвижном роторе оказались бы различными из-за различия в положении проводников отдельных фаз относительно оси обмотки возбуждения. Если на роторе имеется мощная демпферная обмотка, то обмотка возбуждения оказывает незначительное влияние на величину х 0, т.е. ее можно не замыкать накоротко л не приводить во вращение.

Несимметричные установившиеся короткие замыкания. Простейшим примером несимметричной нагрузки является однофазное короткое замыкание. Этот режим помимо методического имеет и большое практическое значение, так как его результаты можно использовать при определении токов аварийного короткого замыкания.

При однофазном коротком замыкании (рис. 1.62, а)

; и .

Из условия (2–108) получим для этого режима

. (1.63)

Следовательно, в данном случае во всех трех фазах возникают токи прямой, обратной и нулевой последовательностей, хотя и имеют место условия İВ 1 + İВ 2 + İВ 0 = İВ = 0 и İС 1 + İС 2 + İС о = İС = 0.

Вращающийся магнитный поток возбуждения индуктирует во всех фазах э.д.с. только прямой последовательности Ė 1 = Ė 0. Пренебрегая активными сопротивлениями, для фазы АX можно написать

(1.64)

или с учетом (1.63)

EA = jiA(xnp + x2 + x0)/3,(1.65)

откуда установившийся ток однофазного короткого замыкания

. (1.66)

Рис. 1.62 – Схема однофазного короткого замыкания (а) и векторная диаграмма токов и напряжений при этом режиме (б)

Сравнивая (1.66) с величиной установившегося тока трехфазного короткого замыкания I кз = Е 0 сн, получаем, что I к1 > I кз, так как x пр = x сн; х 2< х сни х 0< х сн. Величину напряжений для фаз ВY и СZ определим из уравнений:

UB = EB–jIBlxnv–jiBix2–jIB0x0; (1.67)

Uc = Ec–jiclxnv–jiC2x2–jiC0x0. (1.68)

На рис. 1.62, б показана векторная диаграмма, построенная по (1.64), (1.67) и (1.68) для всех трех фаз. Построение начинается с вектора ĖА и отстающего от него по фазе на 90° вектора İА. Векторы İA 1, İA 2и İА 0совпадают с вектором İA по фазе и составляют ⅓ от него по величине. Остальные векторы симметричных составляющих соответственно ориентируются по току в фазе А – X. Дальнейшие построения производятся обычным порядком с учетом того, что векторы фазных э. д. с. сдвинуты относительно друг друга на 120°.

Двухфазное короткое замыкание, например, фаз АX и ВY (рис. 1.63, а) характеризуется следующими соотношениями: İС = 0; ÙAB = 0; ÙAB в силу симметрии схемы и İА =İВ, так как при положительном направлении тока в фазе АX (например, от конца фазы к началу), в фазе ВY ток будет иметь отрицательное направление. Токи нулевой последовательности в данном режиме равны нулю, так как

. (1.69)

Рис. 1.63 – Схема двухфазного короткого замыкания (а) и векторные диаграммы токов и напряжений при этом режиме (б, в)

Так как в фазе СZ сумма токов прямой и обратной последовательностей равна нулю

. (1.70)

и для нее İС 1 = – İС 2, то, очевидно, во всех фазах токи прямой и обратной последовательностей будут равны по модулю (рис. 1.63, б). Для определения установившегося тока двухфазного короткого замыкания İ к2 будем исходить из фазных напряжений:

(1.71)

При этом линейное напряжение

Из векторной диаграммы (рис. 1.63, б) следует, что

. (1.72)

Откуда

. (1.73)

Следовательно,

. (1.74)

Так как İАİВ = А = (İА 1İВ 1) +(İА 2İВ 2) = АВ1 получаем

. (1.75)

Векторная диаграмма напряжений при двухфазном коротком замыкании изображена на рис. 1.63, в.

Внезапное (аварийное) короткое замыкание. При одно- и двухфазном внезапных коротких замыканиях ток короткого замыкания больше, чем при трехфазном аварийном коротком замыкании, в соответствии с тем, что при установившемся режиме ток при двух- и однофазном коротких замыканиях больше, чем при трехфазном. В случае аварийных несимметричных коротких замыканий возникают, так же как при трехфазном коротком замыкании, апериодическая и периодическая составляющие тока. Начальное действующее значение периодической составляющей тока I' уст.макс можно определять по формулам (1.66) или (1.75), подставляя вместо х пр величину х"d или x'd. При этом индуктивные сопротивления х2 и х 0остаются практически одинаковыми как для установившихся, так и для переходных режимов. В остальном определение тока короткого замыкания при несимметричных режимах производится так же, как и при трехфазном коротком замыкании.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: