Г па в а 2


Біоекологія



       
   
 


гліцерин тощо, з яких утворювалися білки, нуклеїнові кислоти, жири та інші необхідні для клітини компоненти. З погляду другого закону термодинаміки, продуценти створювали низько-ентропійні сполуки, використовуючи для цього поглинуту проме­нисту енергію.

Ці низькоентропійні, а отже, високоенергетичні сполуки — органічні речовини — в подальшому споживалися консументами. Зазвичай консументи спочатку поглинали складні органічні речо­вини, а потім частково розкладали їх на простіші, наприклад, полісахариди — на прості цукри, звільняючи енергію, потрібну для підтримання своєї життєдіяльності. Добута енергія витрачала­ся на трансформацію залишків використаних складних органіч­них речовин в інші необхідні речовини й на підтримання процесів метаболізму організмів-споживачів.

І нарешті, органічна речовина відмерлих продуцентів і консу-ментів споживалася редуцентами. Давні редуценти, на відміну від консументів, виділяли в зовнішнє середовище ферменти (так звані екзоферменти), що розкладали складні органічні сполуки на простіші, а потім поглинали ці прості сполуки. Всередині клітин більшу частину поглинутих простих органічних сполук редуценти окиснювали до мінеральних речовин, одержуючи необхідну енергію, а із залишків створювали потрібні для себе складніші органічні речовини.

Отже, жива речовина (біота) — продуценти, консументи й редуценти — утворила ланцюг живлення (трофічний ланцюг), який через неживу речовину — мінеральні сполуки — замкнувся в коло. Відтоді продуценти синтезували органічні речовини з неор­ганічних, консументи їх трансформували, а редуценти розклада­ли до мінеральних сполук, які потім знову споживалися проду­центами для процесів синтезу. З потоку речовин у цьому колі утворився біологічний кругообіг речовин (рис. 2.1).

Геологічний і біологічний кругообіги речовин разом склали біогеохімічний кругообіг, з'єднавши в ньому водночас величезну потужність першого й надзвичайні швидкість та активність друго­го. Біогеохімічний кругообіг «налагоджувався» приблизно 1,5— 2 млрд років, потім стабілізувався, суттєво не змінюючися про­тягом більш як 2 млрд років — дотепер.

Поява фотосинтезуючих продуцентів, окрім усього іншого, мала один важливий наслідок — на Землі сформувалася киснева


атмосфера, яка визначила подальші етапи еволюції планети й біосфери.




V /M CH4,N,P,K,H2S " \Консумеі... 1 Органічні\Д Редуценти речовини "~-~._-JV


Майже всі первинні прокаріотичні організми були анаероба­ми. Кисень, життєво необхідний переважній більшості видів, що існують нині, для давніх організмів був однією з найсильніших

Рис. 2.1 Біологічний кругообіг речовин

отрут. Надзвичайно активний окиснювач, вільний кисень, руйну­вав, дезактивував, «спалював» більшість ферментів давніх бак-терій-анаеробів, тому вони діставали енергію лише за рахунок безкисневих і низькоефективних процесів бродіння й розщеплен­ня простих цукрів — шляхом гліколізу. Однак саме кисень виділяли в процесі фотосинтезу первинні продуценти-фотоавто-трофи — синьозелені водорості. Оскільки через високу вул­канічну активність планети давні моря були дуже теплими, то ли­ше незначна кількість цього кисню розчинялась у воді Світового океану. Основна маса кисню нагромаджувалася в атмосфері, де зрештою окиснювала метан і аміак у вуглекислий газ, вільний азот та його оксиди. З дощами вуглекислий азот і азотні сполуки потрапляли в океан і там споживалися продуцентами. Поступово кисень замістив у атмосфері метан і аміак. Частина кисню під впливом сонячного світла й електричних розрядів у атмосфері


Розділ І Сучасні підходи в науці про довкілля


Глава 2


Біоекопогія



перетворювалася на озон. Молекули озону, концентруючись у верхніх шарах атмосфери, прикрили поверхню планети від згуб­ної дії ультрафіолетового випромінювання, що йшло від Сонця. У цей час у Світовому океані серед бактерій виникли види, здатні спочатку тільки захищатися від розчиненого у воді кисню, а в подальшому «навчилися» використовувати його для окиснен-ня глюкози й одержання додаткової енергії. На зміну низько-ефективним процесам бродіння й гліколізу прийшов енергетично набагато вигідніший процес кисневого розщеплення простих цукрів. Організми, що діставали енергію цим шляхом, не лише не отруювалися киснем, а навпаки, мали від нього користь. Такі ор­ганізми названо аеробними. Оскільки шар озону захищав тепер клітини від ультрафіолетового випромінювання, аероби почали колонізацію багатих на кисень поверхневих шарів Світового океану та його мілководь — шельфу. Жива речовина заселила всю гідросферу.

■і Четверта фаза. Виникнення еукаріот. Заселення суші. Сучасна біорізноманітність органічного світу. Ця важлива фаза в розвитку нашої планети та її біосфери ознаменувалася виникнен­ням істот принципово нового типу — побудованих з еукаріотич-них клітин. Еукаріотичні клітини значно складніші за про-каріотичні. Вони диференційовані на системи певних органоїдів (ядро, мітохондрії, ендоплазматична сітка, комплекс Гольджі, лізосоми, хлоропласти тощо), здатні до мітозу, мейозу й статево­го процесу, можуть живитися шляхом фагоцитозу й пінозитозу і т. д. Завдяки здатності до статевого процесу еукаріоти ево­люціонують набагато швидше за прокаріот і мають більший адап­тивний потенціал, а отже, краще пристосовуються до змін умов існування. Вважають, що еукаріотична клітина виникла приблиз­но 1,2 млрд років тому в результаті серії симбіозів різних прокаріотичних клітин, одні з яких дали початок клітині-хазяїну, інші — трансформувалися в мітохондрії та хлоропласти. Перші еукаріоти були гетеротрофними одноклітинними організмами. Вони, шляхом залучення до своєї клітини прокаріотичних фото-автотрофів, поклали початок еукаріотичним одноклітинним водоростям. У подальшому від автотрофних і гетеротрофних еукаріот відокремилося кілька груп грибів. Окрім того, одноклі­тинні гетеротрофні прокаріоти є родоначальниками багато­клітинних безхребетних тварин.


За порівняно короткий час — кілька десятків мільйонів років — еукаріоти «перевідкрили» багатоклітинність, «відкрили» тканинну будову, і близько 430—415 млн років тому перші росли­ни — нащадки водоростей, а слідом за ними й різноманітні тварини та гриби вийшли на сушу, завершуючи колонізацію всієї поверхні нашої планети.

З виходом живої речовини на сушу прискорилися процеси вивітрювання гірських порід. Відтоді не лише коливання темпе­ратури, дощі та вітри руйнували гірські масиви, а й величезна армія рослин, бактерій, грибів і лишайників подрібнювала, роз­пушувала, розчиняла мінерали. Консументи-тварини, споживаю­чи продуцентів, швидко переносили вміщені в органічній речо­вині елементи на значні відстані, редуценти вивільняли, розкла­дали, перевідкладали органіку консументів. Частина вивільнених мінеральних і напівперероблених органічних речовин трансфор­мувалася в гумус, утворюючи родючі біокосні системи — ґрунти. Те, що не поверталося в біологічний кругообіг або не запасалося в ґрунті, змивалося дощами в річки й виносилося в Світовий океан, де споживалося, концентрувалось або перевідкладалось у вигляді осадових порід мешканцями гідросфери. Тектонічні пере­міщення земної кори повільно виносили осадові породи на поверхню, роблячи нагромаджені в них речовини знову доступ­ними для живої речовини літосфери.

..... ^....

За орієнтовними оцінками, протягом усієї історії існування біосфери в біогеохімічному кругообізі брало участь не менше ніж 1,5 млрд видів живих істот, переважна більшість яких виникла протягом четвертої фази історії Землі. При цьому одні види поступово, а іноді й раптово, вимирали внаслідок локальних чи глобальних катаклізмів або поступово витіснялися новими, більш пристосованими до даних умов існування. Через мутації, різно­манітні процеси, пов'язані з перенесенням генів і симбіозами, під дією природного добору види змінювалися, породжуючи нові. Сьогодні людині відомо понад 1,7 млн видів, які існують нині на нашій планеті*: близько 30 тис. видів прокаріот, 450 тис. видів

* За оцінками різних спеціалістів, ця цифра коливається в межах 1,4—2,0 млн видів. Точну кількість складно визначити, бо, з одного боку, щороку описується до 10 тис. нових, раніше не відомих науці видів, з іншого — багато з видів після критич­них перевірок закриваються як помилково або необгрунтовано описані або переводять­ся в розряд синонімів уже відомих видів.


Розділ І Сучасні підходи в науці про довкілля


Глав а 2


Біоекологія



       
 
 
   


рослин, 100 тис. видів грибів і 1 млн 200 тис. видів тварин (із них понад 1 млн видів — комахи). Проте навіть за дуже обережними оцінками, це становить менш як 10 % числа видів, котрі справді живуть разом із нами на Землі. Частка нашого виду — Homo sapi­ens — у загальному генофонді планети не перевищує 0,00006 %.

§ 2.3. j Функціонування біосфери

Довгий шлях життя на Землі — це урок для всіх. І вже коли людина вважає себе улюбленим дитям Природи, вона повинна знати цей урок і пам'ятати, що давні істоти, які не змогли пристосуватися й не відповідали мінливим факторам довкілля, заповнюють нині своїми скелетами палеонтологічні музеї.

Т. Ніколов,

болгарський палеонтолог, еколог

[жерела й кількість енергії в біосфері. Біосфера — це відкрита термодинамічна система, що одер­жує енергію' у вигляді променистої енергії Сонця й теплової енергії процесів радіоактивного розпаду речовин у земній корі та ядрі планети. Радіоактивна енергія, частка якої в енергетичному балансі планети була значною на абіотичних фазах, нині не відіграє помітної ролі в житті біосфери, й основне джерело енергії сьогодні — це сонячне випромінювання. Щороку Земля одержує від Сонця енергію, яка становить близько 10,5 ■ 1020 кДж. Більша частина цієї енергії відбивається від хмар, пилу й земної поверхні (близько 34 %), нагріває атмосферу, літосферу й Світовий океан, після чого розсіюється в космічному просторі у вигляді інфрачер­воного випромінювання (42 %), витрачається на випаровування води й утворення хмар (23 %), на переміщення повітряних мас — утворення вітру (близько 1 %). І лише 0,023 % сонячної енергії, що потрапляє на Землю, вловлюється продуцентами — вищими рослинами, водоростями та фототрофними бактеріями — й запа­сається в процесі фотосинтезу у вигляді енергії хімічних зв'язків органічних сполук. За рік у результаті фотосинтезу утворюється близько 100 млрд т органічних речовин, в яких запасається не менш як 1,8 • 1017 кДж енергії.


Ця зв'язана енергія далі використовується консументами й редуцентами в ланцюгах живлення, і за її рахунок жива речовина виконує роботу — концентрує, трансформує, акумулює й пере­розподіляє хімічні елементи в земній корі, роздрібнює та агрегує неживу речовину. Робота живої речовини супроводжується розсіянням у вигляді тепла майже всієї запасеної в процесі фотосинтезу сонячної енергії. Лише частки процента цієї «фото­синтетичної» енергії не потрапляють у ланцюги живлення й консервуються в осадових породах у вигляді органічної речовини торфу, вугілля, нафти та природного газу.

Отже, в процесі роботи, яку здійснює біосфера, вловлена сонячна енергія трансформується, тобто йде на виконання так званої корисної роботи, й розсіюється. Ці два процеси підпоряд­ковуються двом фундаментальним природним законам — першо­му та другому законам термодинаміки.

Перший закон термодинаміки часто називають зако­ном збереження енергії. Це означає, що енергія не може бути ні народжена, ні знищена, вона може бути лише трансформо­вана з однієї форми в іншу. Кількість енергії при цьому не змінюється.

В екологічних системах відбувається багато перетворень енергії: промениста енергія Сонця завдяки фотосинтезу перетво­рюється на енергію хімічних зв'язків органічної речовини проду­центів, енергія, запасена продуцентами, — на енергію, акумульо­вану в органічній речовині консументів різних рівнів, і т. д. Сучасне людське суспільство також перетворює величезні кіль­кості однієї енергії на іншу.

Другий закон термодинаміки визначає напрям якісних змін енергії в процесі її трансформації з однієї форми в іншу. Закон описує співвідношення корисної та марної роботи під час пере­ходу енергії з однієї форми в іншу й дає уявлення про якість самої енергії.

Другий закон термодинаміки, я вважаю, панує серед законів Природи. І якщо ваша гіпотеза суперечить цьому законові, я нічим не можу вам допомогти.

А. Еддінгтон,

англійський астроном

Згадаймо, що під енергією розуміють здатність системи здійснювати роботу. Але за будь-якої трансформації енергії лише частина її витрачається на виконання корисної роботи. Решта ж

67


Розділ І Сучасні підходи в науці про довкілля


Глава 2


Біоекологія



       
 
 
   


безповоротно розсіюється у вигляді тепла, тобто здійснюється марна робота, пов'язана зі збільшенням швидкості безладного руху частинок. Чим більший процент енергії витрачається на виконання корисної роботи й, відповідно, чим менший процент при цьому розсіюється у вигляді тепла, тим вищою вважається якість початкової енергії. Високоякісна енергія може бути без додаткових енергетичних затрат трансформована в більшу кількість інших видів енергії, ніж низькоякісна.

Енергією найнижчої якості є енергія невпорядкованого броунівського руху, тобто теплова. її не можна використати для виконання корисної роботи. Кількість енергії найнижчої якості, непридатної для здійснення корисної роботи, називають ент-ропісю. Спрощено ентропія — це міра дезорганізації, безладу, випадковості систем та процесів.

Отже, за другим законом термодинаміки, будь-яка робота супро­воджується трансформацією високоякісної енергії в енергію нижчої та найнижчої якостітеплой призводить до зростання ентропії.

Знизити ентропію в термодинамічно закритій системі, яка не отримує енергії ззовні, неможливо — адже вся якісна енергія такої системи врешті-решт перетворюється на низькоякісну, деградує до тепла. Проте у відкритій термодинамічній системі можливо протидіяти зростанню ентропії, використовуючи для цього високоякісну енергію, що надходить іззовні, й відводячи низькоякісну енергію за межі системи.

Всесвіт є закритою системою, й у ньому ентропія постійно зростає. Натомість біосфера є відкритою системою, яка підтримує власний низький рівень ентропії, використовуючи для цього зовнішнє джерело якісної променистої енергії — Сонце — й розсіюючи в космічний простір низькоякісну теплову енергію. Тому, крім ентропії фізичної (ентропії замкненої системи), в екології використовують поняття «ентропія екологічна» — кіль­кість необоротно розсіяної в просторі теплової енергії, яка, проте, компенсується трансформованою енергією зовнішнього джере­ла — Сонця.

Ж Ентропія екологічна. В Космосі ентропія зростає з плином часу, але всередині хаосу існують острівці порядку. Один із найважливіших серед них — життя.

Живі системи за рахунок високовпорядкованої енергії Сонця з низьковпорядкованих компонентів довкілля створюють свій,


вищий, ніж у довкіллі, порядок. За популярним серед фізиків висловом, живе живиться не енергією, воно живиться чужим по­рядком (наприклад, порядком сонячного світла, хімічних зв'язків органічної речовини). В процесі самовпорядковування жива речовина необоротно розсіює енергію, яка плине крізь екосисте­ми, тобто створює ентропію екологічну.

Теплове розсіяння енергії екосистемами відбувається двома основними шляхами: 1) звичайних утрат тепла через різницю в температурах біоти й довкілля; 2) втрат тепла організмами та їх угрупованнями в процесах метаболізму (зокрема дихання) у зв'яз­ку з вивільненням енергії в ході екзотермічних реакцій.

З погляду другого закону термодинаміки біосфера не є «безвідходним виробництвом»: відходи її діяльності — це не речо­вина, а це низькоякісна теплова енергія, що випромінюється за межі планети, тобто ентропія.

Вважають, що еволюція біосфери відбувалася в напрямі зменшен­ня екологічної ентропії. Адже за постійної кількості енергії, що надходить, чим менше тепла випромінюється, тим більше вико­нується корисної роботи, тим упорядкованішою стає система. Наприклад, у системі продуцент—редуцент корисна робота поля­гає в протидії розпаду тіл лише двох ланок — продуцентів і реду-центів, а в системі продуцент—консумент—редуцент — уже в підтриманні організації трьох компонентів. За однакової кількості зовнішньої енергії в обох випадках друга система, котра здійснює більше корисної роботи, випромінюватиме менше тепла, тобто матиме нижчу екологічну ентропію. З цього випливає, що чим довшими є ланцюги живлення, тим вони енергетично доско­наліші.

Рослини поглинають енергію Сонця. Ця енергія циркулює

в системі, яку ми називаємо біотою й можемо зобразити

у вигляді багатосхідчастої піраміди. Нижня сходинкаґрунт.

Сходинка, на якій розташовуються рослини, спирається

на ґрунт; сходинка, на якій розміщуються комахи,на рослини;

птахи й гризунина комах, і так далі, через різні групи тварин,

до вершини, на якій перебувають великі хижаки.

Види, що становлять одну сходинку, об'єднуються

не походженням чи зовнішньою схожістю, а типом їжі... Піт

залежності, які відображають передавання енергії, що міститься

в їжі, від її первинного джерела (рослини) через низку організмів,

кожен з яких поїдає попереднього й з'їдається наступним,

називаються ланцюгами живлення... Земля, таким чином,

це не просто ґрунт, а джерело енергп, що циркулює в системі,


Розділ І Сучасні підходи в науці про довкілля



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: