double arrow

Решение.


Вариация признака носит дискретный характер, число вариант дискретного признака невелико, и значения признака у отдельных единиц совокупности повторяются. Поэтому строится дискретный ряд распределения. Для его построения следует перечислить все встречающиеся варианты значений признака и подсчитать частоту повторения.

Дискретный ряд распределения, построенный по данным, выглядит следующим образом

Количество филиалов в городе организации, х Число банков (или частота, f) Частость, w Накопленная частота, S
1/20=0,05
5/20=0,25 1+5 = 6
8/20=0,40 6+8 = 14
4/20=0,20 14+4 = 18
2/20=0,10 18+2 = 20
Итого 1,00  

Частость w рассчитана как отношение соответствующей частоты к общей сумме частот.

По полученному дискретному ряду распределения строится полигон частот.

Для построения кумуляты следует рассчитать накопленные частоты S. Накопленная частота первой варианты равна частоте первого интервала, т.е. всего 1 банк в городе имеет не больше двух филиалов. Накопленная частота второй варианты равна сумме частот первой и второй вариант (или сумме накопленной частоты первой варианты и частоты второй варианты), т.е. не больше трех филиалов имеют 6 городских банков: у пяти из них по 3 филиала, у одного – 2 филиала. Остальные накопленные частоты определяются аналогично. Накопленная частота последней варианты равна сумме всех частот ряда: все банки в городе имеют не больше 6 филиалов.

Пример 3.Имеются следующие данные о размере прибыли двадцати коммерческих банков. Прибыль, млн. руб.:

3,7 4,3 6,7 5,6 5,1 8,1 4,6 5,7 6,4 5,9 5,2 6,2 6,3 7,2 7,9 5,8 4,9 7,6 7,0 6,9

Построить ряд распределения по имеющимся данным. Дать графическое изображение ряда распределения.

Решение. Вариация признака носит непрерывный характер, значения признака у отдельных единиц совокупности не повторяются. Поэтому строится интервальный ряд распределения. Для его построения следует определить количество интервалов и величину интервала.

Т.к. количество интервалов заранее не задано, определим его по формуле Стерджесса: n=1+3,322*lg20=1+3,322*1,3= 5,3 Дробное число, характеризующее количество интервалов, желательно округлять в меньшую сторону. Т.о., n=5

Величина интервала h=(8,1-3,7)/5=0,88 Число, характеризующее величину интервала, округляется с той же точностью, что и исходные данные. В нашем случае следует округлить до 0,1: h=0,9.

Строим интервальный ряд распределения:

№ группы Группы по размеру прибыли х Число банков (частота) f Частость, w Накопленная частота S
3,7 – 4,6 0,15
4,6 – 5,5 0,15
5,5 – 6,4 0,35
6,4 – 7,3 0,2
7,3 – 8,2 0,15
Итого  

При подсчете частот воспользуемся принципом «включительно», согласно которому единица совокупности, имеющая значение признака, равное границе двух смежных групп (например, банк с прибылью 4,6 млн. руб.), включается в интервал, где он служит верхней границей (банк с прибылью 4,6 млн. руб. включим в группу с размером прибыли от 3,7 до 4,6 млн. руб.).




Расчет частостей и накопленных частот производится аналогично расчету в дискретных рядах распределения.

По полученным значениям частот строится гистограмма распределения, по накопленным частотам – кумулята.

Заказать ✍️ написание учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сейчас читают про: